Metamath Proof Explorer


Theorem knoppndvlem1

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem1.n φ N
knoppndvlem1.j φ J
knoppndvlem1.m φ M
Assertion knoppndvlem1 φ 2 N J 2 M

Proof

Step Hyp Ref Expression
1 knoppndvlem1.n φ N
2 knoppndvlem1.j φ J
3 knoppndvlem1.m φ M
4 2re 2
5 4 a1i φ 2
6 nnz N N
7 1 6 syl φ N
8 7 zred φ N
9 5 8 remulcld φ 2 N
10 5 recnd φ 2
11 8 recnd φ N
12 2ne0 2 0
13 12 a1i φ 2 0
14 0red φ 0
15 1red φ 1
16 0lt1 0 < 1
17 16 a1i φ 0 < 1
18 nnge1 N 1 N
19 1 18 syl φ 1 N
20 14 15 8 17 19 ltletrd φ 0 < N
21 14 20 ltned φ 0 N
22 21 necomd φ N 0
23 10 11 13 22 mulne0d φ 2 N 0
24 2 znegcld φ J
25 9 23 24 reexpclzd φ 2 N J
26 25 5 13 redivcld φ 2 N J 2
27 3 zred φ M
28 26 27 remulcld φ 2 N J 2 M