Metamath Proof Explorer


Theorem knoppndvlem1

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem1.n φN
knoppndvlem1.j φJ
knoppndvlem1.m φM
Assertion knoppndvlem1 φ2 NJ2 M

Proof

Step Hyp Ref Expression
1 knoppndvlem1.n φN
2 knoppndvlem1.j φJ
3 knoppndvlem1.m φM
4 2re 2
5 4 a1i φ2
6 nnz NN
7 1 6 syl φN
8 7 zred φN
9 5 8 remulcld φ2 N
10 5 recnd φ2
11 8 recnd φN
12 2ne0 20
13 12 a1i φ20
14 0red φ0
15 1red φ1
16 0lt1 0<1
17 16 a1i φ0<1
18 nnge1 N1N
19 1 18 syl φ1N
20 14 15 8 17 19 ltletrd φ0<N
21 14 20 ltned φ0N
22 21 necomd φN0
23 10 11 13 22 mulne0d φ2 N0
24 2 znegcld φJ
25 9 23 24 reexpclzd φ2 NJ
26 25 5 13 redivcld φ2 NJ2
27 3 zred φM
28 26 27 remulcld φ2 NJ2 M