Metamath Proof Explorer


Theorem knoppndvlem1

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem1.n
|- ( ph -> N e. NN )
knoppndvlem1.j
|- ( ph -> J e. ZZ )
knoppndvlem1.m
|- ( ph -> M e. ZZ )
Assertion knoppndvlem1
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) e. RR )

Proof

Step Hyp Ref Expression
1 knoppndvlem1.n
 |-  ( ph -> N e. NN )
2 knoppndvlem1.j
 |-  ( ph -> J e. ZZ )
3 knoppndvlem1.m
 |-  ( ph -> M e. ZZ )
4 2re
 |-  2 e. RR
5 4 a1i
 |-  ( ph -> 2 e. RR )
6 nnz
 |-  ( N e. NN -> N e. ZZ )
7 1 6 syl
 |-  ( ph -> N e. ZZ )
8 7 zred
 |-  ( ph -> N e. RR )
9 5 8 remulcld
 |-  ( ph -> ( 2 x. N ) e. RR )
10 5 recnd
 |-  ( ph -> 2 e. CC )
11 8 recnd
 |-  ( ph -> N e. CC )
12 2ne0
 |-  2 =/= 0
13 12 a1i
 |-  ( ph -> 2 =/= 0 )
14 0red
 |-  ( ph -> 0 e. RR )
15 1red
 |-  ( ph -> 1 e. RR )
16 0lt1
 |-  0 < 1
17 16 a1i
 |-  ( ph -> 0 < 1 )
18 nnge1
 |-  ( N e. NN -> 1 <_ N )
19 1 18 syl
 |-  ( ph -> 1 <_ N )
20 14 15 8 17 19 ltletrd
 |-  ( ph -> 0 < N )
21 14 20 ltned
 |-  ( ph -> 0 =/= N )
22 21 necomd
 |-  ( ph -> N =/= 0 )
23 10 11 13 22 mulne0d
 |-  ( ph -> ( 2 x. N ) =/= 0 )
24 2 znegcld
 |-  ( ph -> -u J e. ZZ )
25 9 23 24 reexpclzd
 |-  ( ph -> ( ( 2 x. N ) ^ -u J ) e. RR )
26 25 5 13 redivcld
 |-  ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. RR )
27 3 zred
 |-  ( ph -> M e. RR )
28 26 27 remulcld
 |-  ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) e. RR )