Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem1.n |
|- ( ph -> N e. NN ) |
2 |
|
knoppndvlem1.j |
|- ( ph -> J e. ZZ ) |
3 |
|
knoppndvlem1.m |
|- ( ph -> M e. ZZ ) |
4 |
|
2re |
|- 2 e. RR |
5 |
4
|
a1i |
|- ( ph -> 2 e. RR ) |
6 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
7 |
1 6
|
syl |
|- ( ph -> N e. ZZ ) |
8 |
7
|
zred |
|- ( ph -> N e. RR ) |
9 |
5 8
|
remulcld |
|- ( ph -> ( 2 x. N ) e. RR ) |
10 |
5
|
recnd |
|- ( ph -> 2 e. CC ) |
11 |
8
|
recnd |
|- ( ph -> N e. CC ) |
12 |
|
2ne0 |
|- 2 =/= 0 |
13 |
12
|
a1i |
|- ( ph -> 2 =/= 0 ) |
14 |
|
0red |
|- ( ph -> 0 e. RR ) |
15 |
|
1red |
|- ( ph -> 1 e. RR ) |
16 |
|
0lt1 |
|- 0 < 1 |
17 |
16
|
a1i |
|- ( ph -> 0 < 1 ) |
18 |
|
nnge1 |
|- ( N e. NN -> 1 <_ N ) |
19 |
1 18
|
syl |
|- ( ph -> 1 <_ N ) |
20 |
14 15 8 17 19
|
ltletrd |
|- ( ph -> 0 < N ) |
21 |
14 20
|
ltned |
|- ( ph -> 0 =/= N ) |
22 |
21
|
necomd |
|- ( ph -> N =/= 0 ) |
23 |
10 11 13 22
|
mulne0d |
|- ( ph -> ( 2 x. N ) =/= 0 ) |
24 |
2
|
znegcld |
|- ( ph -> -u J e. ZZ ) |
25 |
9 23 24
|
reexpclzd |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) e. RR ) |
26 |
25 5 13
|
redivcld |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. RR ) |
27 |
3
|
zred |
|- ( ph -> M e. RR ) |
28 |
26 27
|
remulcld |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) e. RR ) |