Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem2.n |
|- ( ph -> N e. NN ) |
2 |
|
knoppndvlem2.i |
|- ( ph -> I e. ZZ ) |
3 |
|
knoppndvlem2.j |
|- ( ph -> J e. ZZ ) |
4 |
|
knoppndvlem2.m |
|- ( ph -> M e. ZZ ) |
5 |
|
knoppndvlem2.1 |
|- ( ph -> J < I ) |
6 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
7 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
8 |
1 7
|
syl |
|- ( ph -> N e. ZZ ) |
9 |
8
|
zcnd |
|- ( ph -> N e. CC ) |
10 |
6 9
|
mulcld |
|- ( ph -> ( 2 x. N ) e. CC ) |
11 |
|
2ne0 |
|- 2 =/= 0 |
12 |
11
|
a1i |
|- ( ph -> 2 =/= 0 ) |
13 |
|
0red |
|- ( ph -> 0 e. RR ) |
14 |
|
1red |
|- ( ph -> 1 e. RR ) |
15 |
8
|
zred |
|- ( ph -> N e. RR ) |
16 |
|
0lt1 |
|- 0 < 1 |
17 |
16
|
a1i |
|- ( ph -> 0 < 1 ) |
18 |
|
nnge1 |
|- ( N e. NN -> 1 <_ N ) |
19 |
1 18
|
syl |
|- ( ph -> 1 <_ N ) |
20 |
13 14 15 17 19
|
ltletrd |
|- ( ph -> 0 < N ) |
21 |
13 20
|
ltned |
|- ( ph -> 0 =/= N ) |
22 |
21
|
necomd |
|- ( ph -> N =/= 0 ) |
23 |
6 9 12 22
|
mulne0d |
|- ( ph -> ( 2 x. N ) =/= 0 ) |
24 |
10 23 2
|
expclzd |
|- ( ph -> ( ( 2 x. N ) ^ I ) e. CC ) |
25 |
3
|
znegcld |
|- ( ph -> -u J e. ZZ ) |
26 |
10 23 25
|
expclzd |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) e. CC ) |
27 |
26 6 12
|
divcld |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. CC ) |
28 |
4
|
zcnd |
|- ( ph -> M e. CC ) |
29 |
24 27 28
|
mulassd |
|- ( ph -> ( ( ( ( 2 x. N ) ^ I ) x. ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) x. M ) = ( ( ( 2 x. N ) ^ I ) x. ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) ) |
30 |
29
|
eqcomd |
|- ( ph -> ( ( ( 2 x. N ) ^ I ) x. ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) = ( ( ( ( 2 x. N ) ^ I ) x. ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) x. M ) ) |
31 |
24 26 6 12
|
divassd |
|- ( ph -> ( ( ( ( 2 x. N ) ^ I ) x. ( ( 2 x. N ) ^ -u J ) ) / 2 ) = ( ( ( 2 x. N ) ^ I ) x. ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) |
32 |
31
|
eqcomd |
|- ( ph -> ( ( ( 2 x. N ) ^ I ) x. ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( ( ( 2 x. N ) ^ I ) x. ( ( 2 x. N ) ^ -u J ) ) / 2 ) ) |
33 |
10 23
|
jca |
|- ( ph -> ( ( 2 x. N ) e. CC /\ ( 2 x. N ) =/= 0 ) ) |
34 |
2 25
|
jca |
|- ( ph -> ( I e. ZZ /\ -u J e. ZZ ) ) |
35 |
33 34
|
jca |
|- ( ph -> ( ( ( 2 x. N ) e. CC /\ ( 2 x. N ) =/= 0 ) /\ ( I e. ZZ /\ -u J e. ZZ ) ) ) |
36 |
|
expaddz |
|- ( ( ( ( 2 x. N ) e. CC /\ ( 2 x. N ) =/= 0 ) /\ ( I e. ZZ /\ -u J e. ZZ ) ) -> ( ( 2 x. N ) ^ ( I + -u J ) ) = ( ( ( 2 x. N ) ^ I ) x. ( ( 2 x. N ) ^ -u J ) ) ) |
37 |
35 36
|
syl |
|- ( ph -> ( ( 2 x. N ) ^ ( I + -u J ) ) = ( ( ( 2 x. N ) ^ I ) x. ( ( 2 x. N ) ^ -u J ) ) ) |
38 |
37
|
eqcomd |
|- ( ph -> ( ( ( 2 x. N ) ^ I ) x. ( ( 2 x. N ) ^ -u J ) ) = ( ( 2 x. N ) ^ ( I + -u J ) ) ) |
39 |
2
|
zcnd |
|- ( ph -> I e. CC ) |
40 |
3
|
zcnd |
|- ( ph -> J e. CC ) |
41 |
39 40
|
negsubd |
|- ( ph -> ( I + -u J ) = ( I - J ) ) |
42 |
41
|
oveq2d |
|- ( ph -> ( ( 2 x. N ) ^ ( I + -u J ) ) = ( ( 2 x. N ) ^ ( I - J ) ) ) |
43 |
3 2
|
jca |
|- ( ph -> ( J e. ZZ /\ I e. ZZ ) ) |
44 |
|
znnsub |
|- ( ( J e. ZZ /\ I e. ZZ ) -> ( J < I <-> ( I - J ) e. NN ) ) |
45 |
43 44
|
syl |
|- ( ph -> ( J < I <-> ( I - J ) e. NN ) ) |
46 |
5 45
|
mpbid |
|- ( ph -> ( I - J ) e. NN ) |
47 |
10 46
|
jca |
|- ( ph -> ( ( 2 x. N ) e. CC /\ ( I - J ) e. NN ) ) |
48 |
|
expm1t |
|- ( ( ( 2 x. N ) e. CC /\ ( I - J ) e. NN ) -> ( ( 2 x. N ) ^ ( I - J ) ) = ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. ( 2 x. N ) ) ) |
49 |
47 48
|
syl |
|- ( ph -> ( ( 2 x. N ) ^ ( I - J ) ) = ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. ( 2 x. N ) ) ) |
50 |
38 42 49
|
3eqtrd |
|- ( ph -> ( ( ( 2 x. N ) ^ I ) x. ( ( 2 x. N ) ^ -u J ) ) = ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. ( 2 x. N ) ) ) |
51 |
50
|
oveq1d |
|- ( ph -> ( ( ( ( 2 x. N ) ^ I ) x. ( ( 2 x. N ) ^ -u J ) ) / 2 ) = ( ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. ( 2 x. N ) ) / 2 ) ) |
52 |
2 3
|
jca |
|- ( ph -> ( I e. ZZ /\ J e. ZZ ) ) |
53 |
|
zsubcl |
|- ( ( I e. ZZ /\ J e. ZZ ) -> ( I - J ) e. ZZ ) |
54 |
52 53
|
syl |
|- ( ph -> ( I - J ) e. ZZ ) |
55 |
|
peano2zm |
|- ( ( I - J ) e. ZZ -> ( ( I - J ) - 1 ) e. ZZ ) |
56 |
54 55
|
syl |
|- ( ph -> ( ( I - J ) - 1 ) e. ZZ ) |
57 |
3
|
zred |
|- ( ph -> J e. RR ) |
58 |
2
|
zred |
|- ( ph -> I e. RR ) |
59 |
57 58
|
posdifd |
|- ( ph -> ( J < I <-> 0 < ( I - J ) ) ) |
60 |
5 59
|
mpbid |
|- ( ph -> 0 < ( I - J ) ) |
61 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
62 |
61 54
|
jca |
|- ( ph -> ( 0 e. ZZ /\ ( I - J ) e. ZZ ) ) |
63 |
|
zltlem1 |
|- ( ( 0 e. ZZ /\ ( I - J ) e. ZZ ) -> ( 0 < ( I - J ) <-> 0 <_ ( ( I - J ) - 1 ) ) ) |
64 |
62 63
|
syl |
|- ( ph -> ( 0 < ( I - J ) <-> 0 <_ ( ( I - J ) - 1 ) ) ) |
65 |
60 64
|
mpbid |
|- ( ph -> 0 <_ ( ( I - J ) - 1 ) ) |
66 |
56 65
|
jca |
|- ( ph -> ( ( ( I - J ) - 1 ) e. ZZ /\ 0 <_ ( ( I - J ) - 1 ) ) ) |
67 |
|
elnn0z |
|- ( ( ( I - J ) - 1 ) e. NN0 <-> ( ( ( I - J ) - 1 ) e. ZZ /\ 0 <_ ( ( I - J ) - 1 ) ) ) |
68 |
66 67
|
sylibr |
|- ( ph -> ( ( I - J ) - 1 ) e. NN0 ) |
69 |
10 68
|
expcld |
|- ( ph -> ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) e. CC ) |
70 |
69 10 6 12
|
divassd |
|- ( ph -> ( ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. ( 2 x. N ) ) / 2 ) = ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. ( ( 2 x. N ) / 2 ) ) ) |
71 |
9 6 12
|
divcan3d |
|- ( ph -> ( ( 2 x. N ) / 2 ) = N ) |
72 |
71
|
oveq2d |
|- ( ph -> ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. ( ( 2 x. N ) / 2 ) ) = ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. N ) ) |
73 |
70 72
|
eqtrd |
|- ( ph -> ( ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. ( 2 x. N ) ) / 2 ) = ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. N ) ) |
74 |
32 51 73
|
3eqtrd |
|- ( ph -> ( ( ( 2 x. N ) ^ I ) x. ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. N ) ) |
75 |
74
|
oveq1d |
|- ( ph -> ( ( ( ( 2 x. N ) ^ I ) x. ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) x. M ) = ( ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. N ) x. M ) ) |
76 |
30 75
|
eqtrd |
|- ( ph -> ( ( ( 2 x. N ) ^ I ) x. ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) = ( ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. N ) x. M ) ) |
77 |
|
2z |
|- 2 e. ZZ |
78 |
77
|
a1i |
|- ( ph -> 2 e. ZZ ) |
79 |
78 8
|
jca |
|- ( ph -> ( 2 e. ZZ /\ N e. ZZ ) ) |
80 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 x. N ) e. ZZ ) |
81 |
79 80
|
syl |
|- ( ph -> ( 2 x. N ) e. ZZ ) |
82 |
81 68
|
jca |
|- ( ph -> ( ( 2 x. N ) e. ZZ /\ ( ( I - J ) - 1 ) e. NN0 ) ) |
83 |
|
zexpcl |
|- ( ( ( 2 x. N ) e. ZZ /\ ( ( I - J ) - 1 ) e. NN0 ) -> ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) e. ZZ ) |
84 |
82 83
|
syl |
|- ( ph -> ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) e. ZZ ) |
85 |
84 8
|
zmulcld |
|- ( ph -> ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. N ) e. ZZ ) |
86 |
85 4
|
zmulcld |
|- ( ph -> ( ( ( ( 2 x. N ) ^ ( ( I - J ) - 1 ) ) x. N ) x. M ) e. ZZ ) |
87 |
76 86
|
eqeltrd |
|- ( ph -> ( ( ( 2 x. N ) ^ I ) x. ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) e. ZZ ) |