Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem2.n |
|
2 |
|
knoppndvlem2.i |
|
3 |
|
knoppndvlem2.j |
|
4 |
|
knoppndvlem2.m |
|
5 |
|
knoppndvlem2.1 |
|
6 |
|
2cnd |
|
7 |
|
nnz |
|
8 |
1 7
|
syl |
|
9 |
8
|
zcnd |
|
10 |
6 9
|
mulcld |
|
11 |
|
2ne0 |
|
12 |
11
|
a1i |
|
13 |
|
0red |
|
14 |
|
1red |
|
15 |
8
|
zred |
|
16 |
|
0lt1 |
|
17 |
16
|
a1i |
|
18 |
|
nnge1 |
|
19 |
1 18
|
syl |
|
20 |
13 14 15 17 19
|
ltletrd |
|
21 |
13 20
|
ltned |
|
22 |
21
|
necomd |
|
23 |
6 9 12 22
|
mulne0d |
|
24 |
10 23 2
|
expclzd |
|
25 |
3
|
znegcld |
|
26 |
10 23 25
|
expclzd |
|
27 |
26 6 12
|
divcld |
|
28 |
4
|
zcnd |
|
29 |
24 27 28
|
mulassd |
|
30 |
29
|
eqcomd |
|
31 |
24 26 6 12
|
divassd |
|
32 |
31
|
eqcomd |
|
33 |
10 23
|
jca |
|
34 |
2 25
|
jca |
|
35 |
33 34
|
jca |
|
36 |
|
expaddz |
|
37 |
35 36
|
syl |
|
38 |
37
|
eqcomd |
|
39 |
2
|
zcnd |
|
40 |
3
|
zcnd |
|
41 |
39 40
|
negsubd |
|
42 |
41
|
oveq2d |
|
43 |
3 2
|
jca |
|
44 |
|
znnsub |
|
45 |
43 44
|
syl |
|
46 |
5 45
|
mpbid |
|
47 |
10 46
|
jca |
|
48 |
|
expm1t |
|
49 |
47 48
|
syl |
|
50 |
38 42 49
|
3eqtrd |
|
51 |
50
|
oveq1d |
|
52 |
2 3
|
jca |
|
53 |
|
zsubcl |
|
54 |
52 53
|
syl |
|
55 |
|
peano2zm |
|
56 |
54 55
|
syl |
|
57 |
3
|
zred |
|
58 |
2
|
zred |
|
59 |
57 58
|
posdifd |
|
60 |
5 59
|
mpbid |
|
61 |
|
0zd |
|
62 |
61 54
|
jca |
|
63 |
|
zltlem1 |
|
64 |
62 63
|
syl |
|
65 |
60 64
|
mpbid |
|
66 |
56 65
|
jca |
|
67 |
|
elnn0z |
|
68 |
66 67
|
sylibr |
|
69 |
10 68
|
expcld |
|
70 |
69 10 6 12
|
divassd |
|
71 |
9 6 12
|
divcan3d |
|
72 |
71
|
oveq2d |
|
73 |
70 72
|
eqtrd |
|
74 |
32 51 73
|
3eqtrd |
|
75 |
74
|
oveq1d |
|
76 |
30 75
|
eqtrd |
|
77 |
|
2z |
|
78 |
77
|
a1i |
|
79 |
78 8
|
jca |
|
80 |
|
zmulcl |
|
81 |
79 80
|
syl |
|
82 |
81 68
|
jca |
|
83 |
|
zexpcl |
|
84 |
82 83
|
syl |
|
85 |
84 8
|
zmulcld |
|
86 |
85 4
|
zmulcld |
|
87 |
76 86
|
eqeltrd |
|