Metamath Proof Explorer


Theorem knoppndvlem2

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem2.n φ N
knoppndvlem2.i φ I
knoppndvlem2.j φ J
knoppndvlem2.m φ M
knoppndvlem2.1 φ J < I
Assertion knoppndvlem2 φ 2 N I 2 N J 2 M

Proof

Step Hyp Ref Expression
1 knoppndvlem2.n φ N
2 knoppndvlem2.i φ I
3 knoppndvlem2.j φ J
4 knoppndvlem2.m φ M
5 knoppndvlem2.1 φ J < I
6 2cnd φ 2
7 nnz N N
8 1 7 syl φ N
9 8 zcnd φ N
10 6 9 mulcld φ 2 N
11 2ne0 2 0
12 11 a1i φ 2 0
13 0red φ 0
14 1red φ 1
15 8 zred φ N
16 0lt1 0 < 1
17 16 a1i φ 0 < 1
18 nnge1 N 1 N
19 1 18 syl φ 1 N
20 13 14 15 17 19 ltletrd φ 0 < N
21 13 20 ltned φ 0 N
22 21 necomd φ N 0
23 6 9 12 22 mulne0d φ 2 N 0
24 10 23 2 expclzd φ 2 N I
25 3 znegcld φ J
26 10 23 25 expclzd φ 2 N J
27 26 6 12 divcld φ 2 N J 2
28 4 zcnd φ M
29 24 27 28 mulassd φ 2 N I 2 N J 2 M = 2 N I 2 N J 2 M
30 29 eqcomd φ 2 N I 2 N J 2 M = 2 N I 2 N J 2 M
31 24 26 6 12 divassd φ 2 N I 2 N J 2 = 2 N I 2 N J 2
32 31 eqcomd φ 2 N I 2 N J 2 = 2 N I 2 N J 2
33 10 23 jca φ 2 N 2 N 0
34 2 25 jca φ I J
35 33 34 jca φ 2 N 2 N 0 I J
36 expaddz 2 N 2 N 0 I J 2 N I + -J = 2 N I 2 N J
37 35 36 syl φ 2 N I + -J = 2 N I 2 N J
38 37 eqcomd φ 2 N I 2 N J = 2 N I + -J
39 2 zcnd φ I
40 3 zcnd φ J
41 39 40 negsubd φ I + -J = I J
42 41 oveq2d φ 2 N I + -J = 2 N I J
43 3 2 jca φ J I
44 znnsub J I J < I I J
45 43 44 syl φ J < I I J
46 5 45 mpbid φ I J
47 10 46 jca φ 2 N I J
48 expm1t 2 N I J 2 N I J = 2 N I - J - 1 2 N
49 47 48 syl φ 2 N I J = 2 N I - J - 1 2 N
50 38 42 49 3eqtrd φ 2 N I 2 N J = 2 N I - J - 1 2 N
51 50 oveq1d φ 2 N I 2 N J 2 = 2 N I - J - 1 2 N 2
52 2 3 jca φ I J
53 zsubcl I J I J
54 52 53 syl φ I J
55 peano2zm I J I - J - 1
56 54 55 syl φ I - J - 1
57 3 zred φ J
58 2 zred φ I
59 57 58 posdifd φ J < I 0 < I J
60 5 59 mpbid φ 0 < I J
61 0zd φ 0
62 61 54 jca φ 0 I J
63 zltlem1 0 I J 0 < I J 0 I - J - 1
64 62 63 syl φ 0 < I J 0 I - J - 1
65 60 64 mpbid φ 0 I - J - 1
66 56 65 jca φ I - J - 1 0 I - J - 1
67 elnn0z I - J - 1 0 I - J - 1 0 I - J - 1
68 66 67 sylibr φ I - J - 1 0
69 10 68 expcld φ 2 N I - J - 1
70 69 10 6 12 divassd φ 2 N I - J - 1 2 N 2 = 2 N I - J - 1 2 N 2
71 9 6 12 divcan3d φ 2 N 2 = N
72 71 oveq2d φ 2 N I - J - 1 2 N 2 = 2 N I - J - 1 N
73 70 72 eqtrd φ 2 N I - J - 1 2 N 2 = 2 N I - J - 1 N
74 32 51 73 3eqtrd φ 2 N I 2 N J 2 = 2 N I - J - 1 N
75 74 oveq1d φ 2 N I 2 N J 2 M = 2 N I - J - 1 N M
76 30 75 eqtrd φ 2 N I 2 N J 2 M = 2 N I - J - 1 N M
77 2z 2
78 77 a1i φ 2
79 78 8 jca φ 2 N
80 zmulcl 2 N 2 N
81 79 80 syl φ 2 N
82 81 68 jca φ 2 N I - J - 1 0
83 zexpcl 2 N I - J - 1 0 2 N I - J - 1
84 82 83 syl φ 2 N I - J - 1
85 84 8 zmulcld φ 2 N I - J - 1 N
86 85 4 zmulcld φ 2 N I - J - 1 N M
87 76 86 eqeltrd φ 2 N I 2 N J 2 M