Metamath Proof Explorer


Theorem knoppndvlem15

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 6-Jul-2021)

Ref Expression
Hypotheses knoppndvlem15.t T = x x + 1 2 x
knoppndvlem15.f F = y n 0 C n T 2 N n y
knoppndvlem15.w W = w i 0 F w i
knoppndvlem15.a A = 2 N J 2 M
knoppndvlem15.b B = 2 N J 2 M + 1
knoppndvlem15.c φ C 1 1
knoppndvlem15.j φ J 0
knoppndvlem15.m φ M
knoppndvlem15.n φ N
knoppndvlem15.1 φ 1 < N C
Assertion knoppndvlem15 φ C J 2 1 1 2 N C 1 W B W A

Proof

Step Hyp Ref Expression
1 knoppndvlem15.t T = x x + 1 2 x
2 knoppndvlem15.f F = y n 0 C n T 2 N n y
3 knoppndvlem15.w W = w i 0 F w i
4 knoppndvlem15.a A = 2 N J 2 M
5 knoppndvlem15.b B = 2 N J 2 M + 1
6 knoppndvlem15.c φ C 1 1
7 knoppndvlem15.j φ J 0
8 knoppndvlem15.m φ M
9 knoppndvlem15.n φ N
10 knoppndvlem15.1 φ 1 < N C
11 6 knoppndvlem3 φ C C < 1
12 11 simpld φ C
13 12 recnd φ C
14 13 abscld φ C
15 14 7 reexpcld φ C J
16 2re 2
17 16 a1i φ 2
18 2ne0 2 0
19 18 a1i φ 2 0
20 15 17 19 redivcld φ C J 2
21 1red φ 1
22 9 nnred φ N
23 17 22 remulcld φ 2 N
24 23 14 remulcld φ 2 N C
25 24 21 resubcld φ 2 N C 1
26 0red φ 0
27 0lt1 0 < 1
28 27 a1i φ 0 < 1
29 6 9 10 knoppndvlem12 φ 2 N C 1 1 < 2 N C 1
30 29 simprd φ 1 < 2 N C 1
31 26 21 25 28 30 lttrd φ 0 < 2 N C 1
32 25 31 jca φ 2 N C 1 0 < 2 N C 1
33 gt0ne0 2 N C 1 0 < 2 N C 1 2 N C 1 0
34 32 33 syl φ 2 N C 1 0
35 21 25 34 redivcld φ 1 2 N C 1
36 21 35 resubcld φ 1 1 2 N C 1
37 20 36 remulcld φ C J 2 1 1 2 N C 1
38 4 a1i φ A = 2 N J 2 M
39 7 nn0zd φ J
40 9 39 8 knoppndvlem1 φ 2 N J 2 M
41 38 40 eqeltrd φ A
42 1 2 9 12 41 7 knoppcnlem3 φ F A J
43 42 recnd φ F A J
44 5 a1i φ B = 2 N J 2 M + 1
45 8 peano2zd φ M + 1
46 9 39 45 knoppndvlem1 φ 2 N J 2 M + 1
47 44 46 eqeltrd φ B
48 1 2 9 12 47 7 knoppcnlem3 φ F B J
49 48 recnd φ F B J
50 43 49 subcld φ F A J F B J
51 50 abscld φ F A J F B J
52 1 2 47 12 9 knoppndvlem5 φ i = 0 J 1 F B i
53 52 recnd φ i = 0 J 1 F B i
54 1 2 41 12 9 knoppndvlem5 φ i = 0 J 1 F A i
55 54 recnd φ i = 0 J 1 F A i
56 53 55 subcld φ i = 0 J 1 F B i i = 0 J 1 F A i
57 56 abscld φ i = 0 J 1 F B i i = 0 J 1 F A i
58 51 57 resubcld φ F A J F B J i = 0 J 1 F B i i = 0 J 1 F A i
59 50 56 subcld φ F A J - F B J - i = 0 J 1 F B i i = 0 J 1 F A i
60 59 abscld φ F A J - F B J - i = 0 J 1 F B i i = 0 J 1 F A i
61 20 35 jca φ C J 2 1 2 N C 1
62 remulcl C J 2 1 2 N C 1 C J 2 1 2 N C 1
63 61 62 syl φ C J 2 1 2 N C 1
64 20 63 jca φ C J 2 C J 2 1 2 N C 1
65 resubcl C J 2 C J 2 1 2 N C 1 C J 2 C J 2 1 2 N C 1
66 64 65 syl φ C J 2 C J 2 1 2 N C 1
67 20 recnd φ C J 2
68 1cnd φ 1
69 35 recnd φ 1 2 N C 1
70 67 68 69 subdid φ C J 2 1 1 2 N C 1 = C J 2 1 C J 2 1 2 N C 1
71 67 mulid1d φ C J 2 1 = C J 2
72 71 oveq1d φ C J 2 1 C J 2 1 2 N C 1 = C J 2 C J 2 1 2 N C 1
73 66 leidd φ C J 2 C J 2 1 2 N C 1 C J 2 C J 2 1 2 N C 1
74 72 73 eqbrtrd φ C J 2 1 C J 2 1 2 N C 1 C J 2 C J 2 1 2 N C 1
75 70 74 eqbrtrd φ C J 2 1 1 2 N C 1 C J 2 C J 2 1 2 N C 1
76 20 35 remulcld φ C J 2 1 2 N C 1
77 20 leidd φ C J 2 C J 2
78 43 49 abssubd φ F A J F B J = F B J F A J
79 1 2 4 5 6 7 8 9 knoppndvlem10 φ F B J F A J = C J 2
80 78 79 eqtrd φ F A J F B J = C J 2
81 80 eqcomd φ C J 2 = F A J F B J
82 77 81 breqtrd φ C J 2 F A J F B J
83 1 2 4 5 6 7 8 9 10 knoppndvlem14 φ i = 0 J 1 F B i i = 0 J 1 F A i C J 2 1 2 N C 1
84 20 57 51 76 82 83 le2subd φ C J 2 C J 2 1 2 N C 1 F A J F B J i = 0 J 1 F B i i = 0 J 1 F A i
85 37 66 58 75 84 letrd φ C J 2 1 1 2 N C 1 F A J F B J i = 0 J 1 F B i i = 0 J 1 F A i
86 50 56 abs2difd φ F A J F B J i = 0 J 1 F B i i = 0 J 1 F A i F A J - F B J - i = 0 J 1 F B i i = 0 J 1 F A i
87 37 58 60 85 86 letrd φ C J 2 1 1 2 N C 1 F A J - F B J - i = 0 J 1 F B i i = 0 J 1 F A i
88 50 56 abssubd φ F A J - F B J - i = 0 J 1 F B i i = 0 J 1 F A i = i = 0 J 1 F B i - i = 0 J 1 F A i - F A J F B J
89 87 88 breqtrd φ C J 2 1 1 2 N C 1 i = 0 J 1 F B i - i = 0 J 1 F A i - F A J F B J
90 1 2 3 5 6 7 45 9 knoppndvlem6 φ W B = i = 0 J F B i
91 elnn0uz J 0 J 0
92 7 91 sylib φ J 0
93 9 adantr φ i 0 J N
94 12 adantr φ i 0 J C
95 47 adantr φ i 0 J B
96 elfznn0 i 0 J i 0
97 96 adantl φ i 0 J i 0
98 1 2 93 94 95 97 knoppcnlem3 φ i 0 J F B i
99 98 recnd φ i 0 J F B i
100 fveq2 i = J F B i = F B J
101 92 99 100 fsumm1 φ i = 0 J F B i = i = 0 J 1 F B i + F B J
102 90 101 eqtrd φ W B = i = 0 J 1 F B i + F B J
103 1 2 3 4 6 7 8 9 knoppndvlem6 φ W A = i = 0 J F A i
104 41 adantr φ i 0 J A
105 1 2 93 94 104 97 knoppcnlem3 φ i 0 J F A i
106 105 recnd φ i 0 J F A i
107 fveq2 i = J F A i = F A J
108 92 106 107 fsumm1 φ i = 0 J F A i = i = 0 J 1 F A i + F A J
109 103 108 eqtrd φ W A = i = 0 J 1 F A i + F A J
110 102 109 oveq12d φ W B W A = i = 0 J 1 F B i + F B J - i = 0 J 1 F A i + F A J
111 53 55 43 49 subadd4d φ i = 0 J 1 F B i - i = 0 J 1 F A i - F A J F B J = i = 0 J 1 F B i + F B J - i = 0 J 1 F A i + F A J
112 111 eqcomd φ i = 0 J 1 F B i + F B J - i = 0 J 1 F A i + F A J = i = 0 J 1 F B i - i = 0 J 1 F A i - F A J F B J
113 110 112 eqtrd φ W B W A = i = 0 J 1 F B i - i = 0 J 1 F A i - F A J F B J
114 113 fveq2d φ W B W A = i = 0 J 1 F B i - i = 0 J 1 F A i - F A J F B J
115 114 eqcomd φ i = 0 J 1 F B i - i = 0 J 1 F A i - F A J F B J = W B W A
116 89 115 breqtrd φ C J 2 1 1 2 N C 1 W B W A