Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem15.t |
|
2 |
|
knoppndvlem15.f |
|
3 |
|
knoppndvlem15.w |
|
4 |
|
knoppndvlem15.a |
|
5 |
|
knoppndvlem15.b |
|
6 |
|
knoppndvlem15.c |
|
7 |
|
knoppndvlem15.j |
|
8 |
|
knoppndvlem15.m |
|
9 |
|
knoppndvlem15.n |
|
10 |
|
knoppndvlem15.1 |
|
11 |
6
|
knoppndvlem3 |
|
12 |
11
|
simpld |
|
13 |
12
|
recnd |
|
14 |
13
|
abscld |
|
15 |
14 7
|
reexpcld |
|
16 |
|
2re |
|
17 |
16
|
a1i |
|
18 |
|
2ne0 |
|
19 |
18
|
a1i |
|
20 |
15 17 19
|
redivcld |
|
21 |
|
1red |
|
22 |
9
|
nnred |
|
23 |
17 22
|
remulcld |
|
24 |
23 14
|
remulcld |
|
25 |
24 21
|
resubcld |
|
26 |
|
0red |
|
27 |
|
0lt1 |
|
28 |
27
|
a1i |
|
29 |
6 9 10
|
knoppndvlem12 |
|
30 |
29
|
simprd |
|
31 |
26 21 25 28 30
|
lttrd |
|
32 |
25 31
|
jca |
|
33 |
|
gt0ne0 |
|
34 |
32 33
|
syl |
|
35 |
21 25 34
|
redivcld |
|
36 |
21 35
|
resubcld |
|
37 |
20 36
|
remulcld |
|
38 |
4
|
a1i |
|
39 |
7
|
nn0zd |
|
40 |
9 39 8
|
knoppndvlem1 |
|
41 |
38 40
|
eqeltrd |
|
42 |
1 2 9 12 41 7
|
knoppcnlem3 |
|
43 |
42
|
recnd |
|
44 |
5
|
a1i |
|
45 |
8
|
peano2zd |
|
46 |
9 39 45
|
knoppndvlem1 |
|
47 |
44 46
|
eqeltrd |
|
48 |
1 2 9 12 47 7
|
knoppcnlem3 |
|
49 |
48
|
recnd |
|
50 |
43 49
|
subcld |
|
51 |
50
|
abscld |
|
52 |
1 2 47 12 9
|
knoppndvlem5 |
|
53 |
52
|
recnd |
|
54 |
1 2 41 12 9
|
knoppndvlem5 |
|
55 |
54
|
recnd |
|
56 |
53 55
|
subcld |
|
57 |
56
|
abscld |
|
58 |
51 57
|
resubcld |
|
59 |
50 56
|
subcld |
|
60 |
59
|
abscld |
|
61 |
20 35
|
jca |
|
62 |
|
remulcl |
|
63 |
61 62
|
syl |
|
64 |
20 63
|
jca |
|
65 |
|
resubcl |
|
66 |
64 65
|
syl |
|
67 |
20
|
recnd |
|
68 |
|
1cnd |
|
69 |
35
|
recnd |
|
70 |
67 68 69
|
subdid |
|
71 |
67
|
mulid1d |
|
72 |
71
|
oveq1d |
|
73 |
66
|
leidd |
|
74 |
72 73
|
eqbrtrd |
|
75 |
70 74
|
eqbrtrd |
|
76 |
20 35
|
remulcld |
|
77 |
20
|
leidd |
|
78 |
43 49
|
abssubd |
|
79 |
1 2 4 5 6 7 8 9
|
knoppndvlem10 |
|
80 |
78 79
|
eqtrd |
|
81 |
80
|
eqcomd |
|
82 |
77 81
|
breqtrd |
|
83 |
1 2 4 5 6 7 8 9 10
|
knoppndvlem14 |
|
84 |
20 57 51 76 82 83
|
le2subd |
|
85 |
37 66 58 75 84
|
letrd |
|
86 |
50 56
|
abs2difd |
|
87 |
37 58 60 85 86
|
letrd |
|
88 |
50 56
|
abssubd |
|
89 |
87 88
|
breqtrd |
|
90 |
1 2 3 5 6 7 45 9
|
knoppndvlem6 |
|
91 |
|
elnn0uz |
|
92 |
7 91
|
sylib |
|
93 |
9
|
adantr |
|
94 |
12
|
adantr |
|
95 |
47
|
adantr |
|
96 |
|
elfznn0 |
|
97 |
96
|
adantl |
|
98 |
1 2 93 94 95 97
|
knoppcnlem3 |
|
99 |
98
|
recnd |
|
100 |
|
fveq2 |
|
101 |
92 99 100
|
fsumm1 |
|
102 |
90 101
|
eqtrd |
|
103 |
1 2 3 4 6 7 8 9
|
knoppndvlem6 |
|
104 |
41
|
adantr |
|
105 |
1 2 93 94 104 97
|
knoppcnlem3 |
|
106 |
105
|
recnd |
|
107 |
|
fveq2 |
|
108 |
92 106 107
|
fsumm1 |
|
109 |
103 108
|
eqtrd |
|
110 |
102 109
|
oveq12d |
|
111 |
53 55 43 49
|
subadd4d |
|
112 |
111
|
eqcomd |
|
113 |
110 112
|
eqtrd |
|
114 |
113
|
fveq2d |
|
115 |
114
|
eqcomd |
|
116 |
89 115
|
breqtrd |
|