| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndvlem10.t |
|
| 2 |
|
knoppndvlem10.f |
|
| 3 |
|
knoppndvlem10.a |
|
| 4 |
|
knoppndvlem10.b |
|
| 5 |
|
knoppndvlem10.c |
|
| 6 |
|
knoppndvlem10.j |
|
| 7 |
|
knoppndvlem10.m |
|
| 8 |
|
knoppndvlem10.n |
|
| 9 |
5
|
adantr |
|
| 10 |
6
|
adantr |
|
| 11 |
7
|
peano2zd |
|
| 12 |
11
|
adantr |
|
| 13 |
8
|
adantr |
|
| 14 |
|
notnot |
|
| 15 |
14
|
adantl |
|
| 16 |
7
|
adantr |
|
| 17 |
|
oddp1even |
|
| 18 |
16 17
|
syl |
|
| 19 |
15 18
|
mtbid |
|
| 20 |
1 2 4 9 10 12 13 19
|
knoppndvlem9 |
|
| 21 |
15
|
notnotrd |
|
| 22 |
1 2 3 9 10 16 13 21
|
knoppndvlem8 |
|
| 23 |
20 22
|
oveq12d |
|
| 24 |
5
|
knoppndvlem3 |
|
| 25 |
24
|
simpld |
|
| 26 |
25
|
recnd |
|
| 27 |
26 6
|
expcld |
|
| 28 |
|
2cnd |
|
| 29 |
|
2ne0 |
|
| 30 |
29
|
a1i |
|
| 31 |
27 28 30
|
divcld |
|
| 32 |
31
|
subid1d |
|
| 33 |
32
|
adantr |
|
| 34 |
23 33
|
eqtrd |
|
| 35 |
34
|
fveq2d |
|
| 36 |
4
|
a1i |
|
| 37 |
6
|
nn0zd |
|
| 38 |
8 37 11
|
knoppndvlem1 |
|
| 39 |
36 38
|
eqeltrd |
|
| 40 |
1 2 8 25 39 6
|
knoppcnlem3 |
|
| 41 |
40
|
recnd |
|
| 42 |
3
|
a1i |
|
| 43 |
8 37 7
|
knoppndvlem1 |
|
| 44 |
42 43
|
eqeltrd |
|
| 45 |
1 2 8 25 44 6
|
knoppcnlem3 |
|
| 46 |
45
|
recnd |
|
| 47 |
41 46
|
abssubd |
|
| 48 |
47
|
adantr |
|
| 49 |
5
|
adantr |
|
| 50 |
6
|
adantr |
|
| 51 |
7
|
adantr |
|
| 52 |
8
|
adantr |
|
| 53 |
|
simpr |
|
| 54 |
1 2 3 49 50 51 52 53
|
knoppndvlem9 |
|
| 55 |
11
|
adantr |
|
| 56 |
51 17
|
syl |
|
| 57 |
53 56
|
mpbid |
|
| 58 |
1 2 4 49 50 55 52 57
|
knoppndvlem8 |
|
| 59 |
54 58
|
oveq12d |
|
| 60 |
32
|
adantr |
|
| 61 |
59 60
|
eqtrd |
|
| 62 |
61
|
fveq2d |
|
| 63 |
48 62
|
eqtrd |
|
| 64 |
35 63
|
pm2.61dan |
|
| 65 |
27 28 30
|
absdivd |
|
| 66 |
26 6
|
absexpd |
|
| 67 |
|
0le2 |
|
| 68 |
|
2re |
|
| 69 |
68
|
absidi |
|
| 70 |
67 69
|
ax-mp |
|
| 71 |
70
|
a1i |
|
| 72 |
66 71
|
oveq12d |
|
| 73 |
65 72
|
eqtrd |
|
| 74 |
64 73
|
eqtrd |
|