Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem10.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
knoppndvlem10.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
knoppndvlem10.a |
⊢ 𝐴 = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) |
4 |
|
knoppndvlem10.b |
⊢ 𝐵 = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( 𝑀 + 1 ) ) |
5 |
|
knoppndvlem10.c |
⊢ ( 𝜑 → 𝐶 ∈ ( - 1 (,) 1 ) ) |
6 |
|
knoppndvlem10.j |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
7 |
|
knoppndvlem10.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
8 |
|
knoppndvlem10.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → 𝐶 ∈ ( - 1 (,) 1 ) ) |
10 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → 𝐽 ∈ ℕ0 ) |
11 |
7
|
peano2zd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℤ ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → ( 𝑀 + 1 ) ∈ ℤ ) |
13 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → 𝑁 ∈ ℕ ) |
14 |
|
notnot |
⊢ ( 2 ∥ 𝑀 → ¬ ¬ 2 ∥ 𝑀 ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → ¬ ¬ 2 ∥ 𝑀 ) |
16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → 𝑀 ∈ ℤ ) |
17 |
|
oddp1even |
⊢ ( 𝑀 ∈ ℤ → ( ¬ 2 ∥ 𝑀 ↔ 2 ∥ ( 𝑀 + 1 ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → ( ¬ 2 ∥ 𝑀 ↔ 2 ∥ ( 𝑀 + 1 ) ) ) |
19 |
15 18
|
mtbid |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → ¬ 2 ∥ ( 𝑀 + 1 ) ) |
20 |
1 2 4 9 10 12 13 19
|
knoppndvlem9 |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) = ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) |
21 |
15
|
notnotrd |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → 2 ∥ 𝑀 ) |
22 |
1 2 3 9 10 16 13 21
|
knoppndvlem8 |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) = 0 ) |
23 |
20 22
|
oveq12d |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) ) = ( ( ( 𝐶 ↑ 𝐽 ) / 2 ) − 0 ) ) |
24 |
5
|
knoppndvlem3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) ) |
25 |
24
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
26 |
25
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
27 |
26 6
|
expcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 𝐽 ) ∈ ℂ ) |
28 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
29 |
|
2ne0 |
⊢ 2 ≠ 0 |
30 |
29
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
31 |
27 28 30
|
divcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 𝐽 ) / 2 ) ∈ ℂ ) |
32 |
31
|
subid1d |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 𝐽 ) / 2 ) − 0 ) = ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → ( ( ( 𝐶 ↑ 𝐽 ) / 2 ) − 0 ) = ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) |
34 |
23 33
|
eqtrd |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) ) = ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) |
35 |
34
|
fveq2d |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑀 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) ) ) = ( abs ‘ ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) ) |
36 |
4
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( 𝑀 + 1 ) ) ) |
37 |
6
|
nn0zd |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
38 |
8 37 11
|
knoppndvlem1 |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( 𝑀 + 1 ) ) ∈ ℝ ) |
39 |
36 38
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
40 |
1 2 8 25 39 6
|
knoppcnlem3 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) ∈ ℝ ) |
41 |
40
|
recnd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) ∈ ℂ ) |
42 |
3
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ) |
43 |
8 37 7
|
knoppndvlem1 |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ∈ ℝ ) |
44 |
42 43
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
45 |
1 2 8 25 44 6
|
knoppcnlem3 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) ∈ ℝ ) |
46 |
45
|
recnd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) ∈ ℂ ) |
47 |
41 46
|
abssubd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) − ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) ) ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) − ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) ) ) ) |
49 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → 𝐶 ∈ ( - 1 (,) 1 ) ) |
50 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → 𝐽 ∈ ℕ0 ) |
51 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → 𝑀 ∈ ℤ ) |
52 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → 𝑁 ∈ ℕ ) |
53 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → ¬ 2 ∥ 𝑀 ) |
54 |
1 2 3 49 50 51 52 53
|
knoppndvlem9 |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) = ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) |
55 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → ( 𝑀 + 1 ) ∈ ℤ ) |
56 |
51 17
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → ( ¬ 2 ∥ 𝑀 ↔ 2 ∥ ( 𝑀 + 1 ) ) ) |
57 |
53 56
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → 2 ∥ ( 𝑀 + 1 ) ) |
58 |
1 2 4 49 50 55 52 57
|
knoppndvlem8 |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) = 0 ) |
59 |
54 58
|
oveq12d |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) − ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) ) = ( ( ( 𝐶 ↑ 𝐽 ) / 2 ) − 0 ) ) |
60 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 𝐶 ↑ 𝐽 ) / 2 ) − 0 ) = ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) |
61 |
59 60
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) − ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) ) = ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) |
62 |
61
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) − ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) ) ) = ( abs ‘ ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) ) |
63 |
48 62
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑀 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) ) ) = ( abs ‘ ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) ) |
64 |
35 63
|
pm2.61dan |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) ) ) = ( abs ‘ ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) ) |
65 |
27 28 30
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) = ( ( abs ‘ ( 𝐶 ↑ 𝐽 ) ) / ( abs ‘ 2 ) ) ) |
66 |
26 6
|
absexpd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐶 ↑ 𝐽 ) ) = ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) |
67 |
|
0le2 |
⊢ 0 ≤ 2 |
68 |
|
2re |
⊢ 2 ∈ ℝ |
69 |
68
|
absidi |
⊢ ( 0 ≤ 2 → ( abs ‘ 2 ) = 2 ) |
70 |
67 69
|
ax-mp |
⊢ ( abs ‘ 2 ) = 2 |
71 |
70
|
a1i |
⊢ ( 𝜑 → ( abs ‘ 2 ) = 2 ) |
72 |
66 71
|
oveq12d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐶 ↑ 𝐽 ) ) / ( abs ‘ 2 ) ) = ( ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) / 2 ) ) |
73 |
65 72
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) = ( ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) / 2 ) ) |
74 |
64 73
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝐽 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) ) ) = ( ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) / 2 ) ) |