| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndvlem9.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
| 2 |
|
knoppndvlem9.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
| 3 |
|
knoppndvlem9.a |
⊢ 𝐴 = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) |
| 4 |
|
knoppndvlem9.c |
⊢ ( 𝜑 → 𝐶 ∈ ( - 1 (,) 1 ) ) |
| 5 |
|
knoppndvlem9.j |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
| 6 |
|
knoppndvlem9.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 7 |
|
knoppndvlem9.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 8 |
|
knoppndvlem9.1 |
⊢ ( 𝜑 → ¬ 2 ∥ 𝑀 ) |
| 9 |
1 2 3 5 6 7
|
knoppndvlem7 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) = ( ( 𝐶 ↑ 𝐽 ) · ( 𝑇 ‘ ( 𝑀 / 2 ) ) ) ) |
| 10 |
|
odd2np1 |
⊢ ( 𝑀 ∈ ℤ → ( ¬ 2 ∥ 𝑀 ↔ ∃ 𝑚 ∈ ℤ ( ( 2 · 𝑚 ) + 1 ) = 𝑀 ) ) |
| 11 |
6 10
|
syl |
⊢ ( 𝜑 → ( ¬ 2 ∥ 𝑀 ↔ ∃ 𝑚 ∈ ℤ ( ( 2 · 𝑚 ) + 1 ) = 𝑀 ) ) |
| 12 |
8 11
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℤ ( ( 2 · 𝑚 ) + 1 ) = 𝑀 ) |
| 13 |
|
eqcom |
⊢ ( ( ( 2 · 𝑚 ) + 1 ) = 𝑀 ↔ 𝑀 = ( ( 2 · 𝑚 ) + 1 ) ) |
| 14 |
13
|
biimpi |
⊢ ( ( ( 2 · 𝑚 ) + 1 ) = 𝑀 → 𝑀 = ( ( 2 · 𝑚 ) + 1 ) ) |
| 15 |
14
|
oveq1d |
⊢ ( ( ( 2 · 𝑚 ) + 1 ) = 𝑀 → ( 𝑀 / 2 ) = ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝑚 ∈ ℤ ∧ ( ( 2 · 𝑚 ) + 1 ) = 𝑀 ) → ( 𝑀 / 2 ) = ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ ( ( 2 · 𝑚 ) + 1 ) = 𝑀 ) ) → ( 𝑀 / 2 ) = ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) |
| 18 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → 2 ∈ ℂ ) |
| 19 |
|
zcn |
⊢ ( 𝑚 ∈ ℤ → 𝑚 ∈ ℂ ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → 𝑚 ∈ ℂ ) |
| 21 |
18 20
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( 2 · 𝑚 ) ∈ ℂ ) |
| 22 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → 1 ∈ ℂ ) |
| 23 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → 2 ≠ 0 ) |
| 25 |
21 22 18 24
|
divdird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) = ( ( ( 2 · 𝑚 ) / 2 ) + ( 1 / 2 ) ) ) |
| 26 |
20 18 24
|
divcan3d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( ( 2 · 𝑚 ) / 2 ) = 𝑚 ) |
| 27 |
26
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( ( ( 2 · 𝑚 ) / 2 ) + ( 1 / 2 ) ) = ( 𝑚 + ( 1 / 2 ) ) ) |
| 28 |
25 27
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) = ( 𝑚 + ( 1 / 2 ) ) ) |
| 29 |
28
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ ( ( 2 · 𝑚 ) + 1 ) = 𝑀 ) ) → ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) = ( 𝑚 + ( 1 / 2 ) ) ) |
| 30 |
17 29
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ ( ( 2 · 𝑚 ) + 1 ) = 𝑀 ) ) → ( 𝑀 / 2 ) = ( 𝑚 + ( 1 / 2 ) ) ) |
| 31 |
30
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ ( ( 2 · 𝑚 ) + 1 ) = 𝑀 ) ) → ( 𝑇 ‘ ( 𝑀 / 2 ) ) = ( 𝑇 ‘ ( 𝑚 + ( 1 / 2 ) ) ) ) |
| 32 |
|
id |
⊢ ( 𝑚 ∈ ℤ → 𝑚 ∈ ℤ ) |
| 33 |
1 32
|
dnizphlfeqhlf |
⊢ ( 𝑚 ∈ ℤ → ( 𝑇 ‘ ( 𝑚 + ( 1 / 2 ) ) ) = ( 1 / 2 ) ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( 𝑇 ‘ ( 𝑚 + ( 1 / 2 ) ) ) = ( 1 / 2 ) ) |
| 35 |
34
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ ( ( 2 · 𝑚 ) + 1 ) = 𝑀 ) ) → ( 𝑇 ‘ ( 𝑚 + ( 1 / 2 ) ) ) = ( 1 / 2 ) ) |
| 36 |
31 35
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ ( ( 2 · 𝑚 ) + 1 ) = 𝑀 ) ) → ( 𝑇 ‘ ( 𝑀 / 2 ) ) = ( 1 / 2 ) ) |
| 37 |
12 36
|
rexlimddv |
⊢ ( 𝜑 → ( 𝑇 ‘ ( 𝑀 / 2 ) ) = ( 1 / 2 ) ) |
| 38 |
37
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 𝐽 ) · ( 𝑇 ‘ ( 𝑀 / 2 ) ) ) = ( ( 𝐶 ↑ 𝐽 ) · ( 1 / 2 ) ) ) |
| 39 |
4
|
knoppndvlem3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) ) |
| 40 |
39
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 41 |
40
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 42 |
41 5
|
expcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 𝐽 ) ∈ ℂ ) |
| 43 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 44 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 45 |
23
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 46 |
42 43 44 45
|
div12d |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 𝐽 ) · ( 1 / 2 ) ) = ( 1 · ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) ) |
| 47 |
42 44 45
|
divcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 𝐽 ) / 2 ) ∈ ℂ ) |
| 48 |
47
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) = ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) |
| 49 |
46 48
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 𝐽 ) · ( 1 / 2 ) ) = ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) |
| 50 |
9 38 49
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐽 ) = ( ( 𝐶 ↑ 𝐽 ) / 2 ) ) |