Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem9.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
knoppndvlem9.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
3 |
|
knoppndvlem9.a |
|- A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) |
4 |
|
knoppndvlem9.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
5 |
|
knoppndvlem9.j |
|- ( ph -> J e. NN0 ) |
6 |
|
knoppndvlem9.m |
|- ( ph -> M e. ZZ ) |
7 |
|
knoppndvlem9.n |
|- ( ph -> N e. NN ) |
8 |
|
knoppndvlem9.1 |
|- ( ph -> -. 2 || M ) |
9 |
1 2 3 5 6 7
|
knoppndvlem7 |
|- ( ph -> ( ( F ` A ) ` J ) = ( ( C ^ J ) x. ( T ` ( M / 2 ) ) ) ) |
10 |
|
odd2np1 |
|- ( M e. ZZ -> ( -. 2 || M <-> E. m e. ZZ ( ( 2 x. m ) + 1 ) = M ) ) |
11 |
6 10
|
syl |
|- ( ph -> ( -. 2 || M <-> E. m e. ZZ ( ( 2 x. m ) + 1 ) = M ) ) |
12 |
8 11
|
mpbid |
|- ( ph -> E. m e. ZZ ( ( 2 x. m ) + 1 ) = M ) |
13 |
|
eqcom |
|- ( ( ( 2 x. m ) + 1 ) = M <-> M = ( ( 2 x. m ) + 1 ) ) |
14 |
13
|
biimpi |
|- ( ( ( 2 x. m ) + 1 ) = M -> M = ( ( 2 x. m ) + 1 ) ) |
15 |
14
|
oveq1d |
|- ( ( ( 2 x. m ) + 1 ) = M -> ( M / 2 ) = ( ( ( 2 x. m ) + 1 ) / 2 ) ) |
16 |
15
|
adantl |
|- ( ( m e. ZZ /\ ( ( 2 x. m ) + 1 ) = M ) -> ( M / 2 ) = ( ( ( 2 x. m ) + 1 ) / 2 ) ) |
17 |
16
|
adantl |
|- ( ( ph /\ ( m e. ZZ /\ ( ( 2 x. m ) + 1 ) = M ) ) -> ( M / 2 ) = ( ( ( 2 x. m ) + 1 ) / 2 ) ) |
18 |
|
2cnd |
|- ( ( ph /\ m e. ZZ ) -> 2 e. CC ) |
19 |
|
zcn |
|- ( m e. ZZ -> m e. CC ) |
20 |
19
|
adantl |
|- ( ( ph /\ m e. ZZ ) -> m e. CC ) |
21 |
18 20
|
mulcld |
|- ( ( ph /\ m e. ZZ ) -> ( 2 x. m ) e. CC ) |
22 |
|
1cnd |
|- ( ( ph /\ m e. ZZ ) -> 1 e. CC ) |
23 |
|
2ne0 |
|- 2 =/= 0 |
24 |
23
|
a1i |
|- ( ( ph /\ m e. ZZ ) -> 2 =/= 0 ) |
25 |
21 22 18 24
|
divdird |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( 2 x. m ) + 1 ) / 2 ) = ( ( ( 2 x. m ) / 2 ) + ( 1 / 2 ) ) ) |
26 |
20 18 24
|
divcan3d |
|- ( ( ph /\ m e. ZZ ) -> ( ( 2 x. m ) / 2 ) = m ) |
27 |
26
|
oveq1d |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( 2 x. m ) / 2 ) + ( 1 / 2 ) ) = ( m + ( 1 / 2 ) ) ) |
28 |
25 27
|
eqtrd |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( 2 x. m ) + 1 ) / 2 ) = ( m + ( 1 / 2 ) ) ) |
29 |
28
|
adantrr |
|- ( ( ph /\ ( m e. ZZ /\ ( ( 2 x. m ) + 1 ) = M ) ) -> ( ( ( 2 x. m ) + 1 ) / 2 ) = ( m + ( 1 / 2 ) ) ) |
30 |
17 29
|
eqtrd |
|- ( ( ph /\ ( m e. ZZ /\ ( ( 2 x. m ) + 1 ) = M ) ) -> ( M / 2 ) = ( m + ( 1 / 2 ) ) ) |
31 |
30
|
fveq2d |
|- ( ( ph /\ ( m e. ZZ /\ ( ( 2 x. m ) + 1 ) = M ) ) -> ( T ` ( M / 2 ) ) = ( T ` ( m + ( 1 / 2 ) ) ) ) |
32 |
|
id |
|- ( m e. ZZ -> m e. ZZ ) |
33 |
1 32
|
dnizphlfeqhlf |
|- ( m e. ZZ -> ( T ` ( m + ( 1 / 2 ) ) ) = ( 1 / 2 ) ) |
34 |
33
|
adantl |
|- ( ( ph /\ m e. ZZ ) -> ( T ` ( m + ( 1 / 2 ) ) ) = ( 1 / 2 ) ) |
35 |
34
|
adantrr |
|- ( ( ph /\ ( m e. ZZ /\ ( ( 2 x. m ) + 1 ) = M ) ) -> ( T ` ( m + ( 1 / 2 ) ) ) = ( 1 / 2 ) ) |
36 |
31 35
|
eqtrd |
|- ( ( ph /\ ( m e. ZZ /\ ( ( 2 x. m ) + 1 ) = M ) ) -> ( T ` ( M / 2 ) ) = ( 1 / 2 ) ) |
37 |
12 36
|
rexlimddv |
|- ( ph -> ( T ` ( M / 2 ) ) = ( 1 / 2 ) ) |
38 |
37
|
oveq2d |
|- ( ph -> ( ( C ^ J ) x. ( T ` ( M / 2 ) ) ) = ( ( C ^ J ) x. ( 1 / 2 ) ) ) |
39 |
4
|
knoppndvlem3 |
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
40 |
39
|
simpld |
|- ( ph -> C e. RR ) |
41 |
40
|
recnd |
|- ( ph -> C e. CC ) |
42 |
41 5
|
expcld |
|- ( ph -> ( C ^ J ) e. CC ) |
43 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
44 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
45 |
23
|
a1i |
|- ( ph -> 2 =/= 0 ) |
46 |
42 43 44 45
|
div12d |
|- ( ph -> ( ( C ^ J ) x. ( 1 / 2 ) ) = ( 1 x. ( ( C ^ J ) / 2 ) ) ) |
47 |
42 44 45
|
divcld |
|- ( ph -> ( ( C ^ J ) / 2 ) e. CC ) |
48 |
47
|
mulid2d |
|- ( ph -> ( 1 x. ( ( C ^ J ) / 2 ) ) = ( ( C ^ J ) / 2 ) ) |
49 |
46 48
|
eqtrd |
|- ( ph -> ( ( C ^ J ) x. ( 1 / 2 ) ) = ( ( C ^ J ) / 2 ) ) |
50 |
9 38 49
|
3eqtrd |
|- ( ph -> ( ( F ` A ) ` J ) = ( ( C ^ J ) / 2 ) ) |