Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem7.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
knoppndvlem7.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
3 |
|
knoppndvlem7.a |
|- A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) |
4 |
|
knoppndvlem7.j |
|- ( ph -> J e. NN0 ) |
5 |
|
knoppndvlem7.m |
|- ( ph -> M e. ZZ ) |
6 |
|
knoppndvlem7.n |
|- ( ph -> N e. NN ) |
7 |
3
|
a1i |
|- ( ph -> A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) |
8 |
4
|
nn0zd |
|- ( ph -> J e. ZZ ) |
9 |
6 8 5
|
knoppndvlem1 |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) e. RR ) |
10 |
7 9
|
eqeltrd |
|- ( ph -> A e. RR ) |
11 |
2 10 4
|
knoppcnlem1 |
|- ( ph -> ( ( F ` A ) ` J ) = ( ( C ^ J ) x. ( T ` ( ( ( 2 x. N ) ^ J ) x. A ) ) ) ) |
12 |
3
|
oveq2i |
|- ( ( ( 2 x. N ) ^ J ) x. A ) = ( ( ( 2 x. N ) ^ J ) x. ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) |
13 |
12
|
a1i |
|- ( ph -> ( ( ( 2 x. N ) ^ J ) x. A ) = ( ( ( 2 x. N ) ^ J ) x. ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) ) |
14 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
15 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
16 |
6 15
|
syl |
|- ( ph -> N e. ZZ ) |
17 |
16
|
zcnd |
|- ( ph -> N e. CC ) |
18 |
14 17
|
mulcld |
|- ( ph -> ( 2 x. N ) e. CC ) |
19 |
18 4
|
expcld |
|- ( ph -> ( ( 2 x. N ) ^ J ) e. CC ) |
20 |
|
2ne0 |
|- 2 =/= 0 |
21 |
20
|
a1i |
|- ( ph -> 2 =/= 0 ) |
22 |
|
0red |
|- ( ph -> 0 e. RR ) |
23 |
|
1red |
|- ( ph -> 1 e. RR ) |
24 |
16
|
zred |
|- ( ph -> N e. RR ) |
25 |
|
0lt1 |
|- 0 < 1 |
26 |
25
|
a1i |
|- ( ph -> 0 < 1 ) |
27 |
|
nnge1 |
|- ( N e. NN -> 1 <_ N ) |
28 |
6 27
|
syl |
|- ( ph -> 1 <_ N ) |
29 |
22 23 24 26 28
|
ltletrd |
|- ( ph -> 0 < N ) |
30 |
22 29
|
ltned |
|- ( ph -> 0 =/= N ) |
31 |
30
|
necomd |
|- ( ph -> N =/= 0 ) |
32 |
14 17 21 31
|
mulne0d |
|- ( ph -> ( 2 x. N ) =/= 0 ) |
33 |
8
|
znegcld |
|- ( ph -> -u J e. ZZ ) |
34 |
18 32 33
|
expclzd |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) e. CC ) |
35 |
34 14 21
|
divcld |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. CC ) |
36 |
5
|
zcnd |
|- ( ph -> M e. CC ) |
37 |
19 35 36
|
mulassd |
|- ( ph -> ( ( ( ( 2 x. N ) ^ J ) x. ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) x. M ) = ( ( ( 2 x. N ) ^ J ) x. ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) ) |
38 |
37
|
eqcomd |
|- ( ph -> ( ( ( 2 x. N ) ^ J ) x. ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) = ( ( ( ( 2 x. N ) ^ J ) x. ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) x. M ) ) |
39 |
19 34 14 21
|
divassd |
|- ( ph -> ( ( ( ( 2 x. N ) ^ J ) x. ( ( 2 x. N ) ^ -u J ) ) / 2 ) = ( ( ( 2 x. N ) ^ J ) x. ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) |
40 |
39
|
eqcomd |
|- ( ph -> ( ( ( 2 x. N ) ^ J ) x. ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( ( ( 2 x. N ) ^ J ) x. ( ( 2 x. N ) ^ -u J ) ) / 2 ) ) |
41 |
18 32 8
|
expnegd |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) = ( 1 / ( ( 2 x. N ) ^ J ) ) ) |
42 |
41
|
oveq2d |
|- ( ph -> ( ( ( 2 x. N ) ^ J ) x. ( ( 2 x. N ) ^ -u J ) ) = ( ( ( 2 x. N ) ^ J ) x. ( 1 / ( ( 2 x. N ) ^ J ) ) ) ) |
43 |
18 32 8
|
expne0d |
|- ( ph -> ( ( 2 x. N ) ^ J ) =/= 0 ) |
44 |
19 43
|
recidd |
|- ( ph -> ( ( ( 2 x. N ) ^ J ) x. ( 1 / ( ( 2 x. N ) ^ J ) ) ) = 1 ) |
45 |
42 44
|
eqtrd |
|- ( ph -> ( ( ( 2 x. N ) ^ J ) x. ( ( 2 x. N ) ^ -u J ) ) = 1 ) |
46 |
45
|
oveq1d |
|- ( ph -> ( ( ( ( 2 x. N ) ^ J ) x. ( ( 2 x. N ) ^ -u J ) ) / 2 ) = ( 1 / 2 ) ) |
47 |
40 46
|
eqtrd |
|- ( ph -> ( ( ( 2 x. N ) ^ J ) x. ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( 1 / 2 ) ) |
48 |
47
|
oveq1d |
|- ( ph -> ( ( ( ( 2 x. N ) ^ J ) x. ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) x. M ) = ( ( 1 / 2 ) x. M ) ) |
49 |
36 14 21
|
divrec2d |
|- ( ph -> ( M / 2 ) = ( ( 1 / 2 ) x. M ) ) |
50 |
49
|
eqcomd |
|- ( ph -> ( ( 1 / 2 ) x. M ) = ( M / 2 ) ) |
51 |
38 48 50
|
3eqtrd |
|- ( ph -> ( ( ( 2 x. N ) ^ J ) x. ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) = ( M / 2 ) ) |
52 |
13 51
|
eqtrd |
|- ( ph -> ( ( ( 2 x. N ) ^ J ) x. A ) = ( M / 2 ) ) |
53 |
52
|
fveq2d |
|- ( ph -> ( T ` ( ( ( 2 x. N ) ^ J ) x. A ) ) = ( T ` ( M / 2 ) ) ) |
54 |
53
|
oveq2d |
|- ( ph -> ( ( C ^ J ) x. ( T ` ( ( ( 2 x. N ) ^ J ) x. A ) ) ) = ( ( C ^ J ) x. ( T ` ( M / 2 ) ) ) ) |
55 |
11 54
|
eqtrd |
|- ( ph -> ( ( F ` A ) ` J ) = ( ( C ^ J ) x. ( T ` ( M / 2 ) ) ) ) |