Metamath Proof Explorer


Theorem knoppndvlem8

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem8.t
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
knoppndvlem8.f
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) )
knoppndvlem8.a
|- A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M )
knoppndvlem8.c
|- ( ph -> C e. ( -u 1 (,) 1 ) )
knoppndvlem8.j
|- ( ph -> J e. NN0 )
knoppndvlem8.m
|- ( ph -> M e. ZZ )
knoppndvlem8.n
|- ( ph -> N e. NN )
knoppndvlem8.1
|- ( ph -> 2 || M )
Assertion knoppndvlem8
|- ( ph -> ( ( F ` A ) ` J ) = 0 )

Proof

Step Hyp Ref Expression
1 knoppndvlem8.t
 |-  T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
2 knoppndvlem8.f
 |-  F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) )
3 knoppndvlem8.a
 |-  A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M )
4 knoppndvlem8.c
 |-  ( ph -> C e. ( -u 1 (,) 1 ) )
5 knoppndvlem8.j
 |-  ( ph -> J e. NN0 )
6 knoppndvlem8.m
 |-  ( ph -> M e. ZZ )
7 knoppndvlem8.n
 |-  ( ph -> N e. NN )
8 knoppndvlem8.1
 |-  ( ph -> 2 || M )
9 1 2 3 5 6 7 knoppndvlem7
 |-  ( ph -> ( ( F ` A ) ` J ) = ( ( C ^ J ) x. ( T ` ( M / 2 ) ) ) )
10 2z
 |-  2 e. ZZ
11 10 a1i
 |-  ( ph -> 2 e. ZZ )
12 2ne0
 |-  2 =/= 0
13 12 a1i
 |-  ( ph -> 2 =/= 0 )
14 11 13 6 3jca
 |-  ( ph -> ( 2 e. ZZ /\ 2 =/= 0 /\ M e. ZZ ) )
15 dvdsval2
 |-  ( ( 2 e. ZZ /\ 2 =/= 0 /\ M e. ZZ ) -> ( 2 || M <-> ( M / 2 ) e. ZZ ) )
16 14 15 syl
 |-  ( ph -> ( 2 || M <-> ( M / 2 ) e. ZZ ) )
17 8 16 mpbid
 |-  ( ph -> ( M / 2 ) e. ZZ )
18 1 17 dnizeq0
 |-  ( ph -> ( T ` ( M / 2 ) ) = 0 )
19 18 oveq2d
 |-  ( ph -> ( ( C ^ J ) x. ( T ` ( M / 2 ) ) ) = ( ( C ^ J ) x. 0 ) )
20 4 knoppndvlem3
 |-  ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) )
21 20 simpld
 |-  ( ph -> C e. RR )
22 21 recnd
 |-  ( ph -> C e. CC )
23 22 5 expcld
 |-  ( ph -> ( C ^ J ) e. CC )
24 23 mul01d
 |-  ( ph -> ( ( C ^ J ) x. 0 ) = 0 )
25 9 19 24 3eqtrd
 |-  ( ph -> ( ( F ` A ) ` J ) = 0 )