| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndvlem8.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppndvlem8.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 3 |
|
knoppndvlem8.a |
|- A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) |
| 4 |
|
knoppndvlem8.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
| 5 |
|
knoppndvlem8.j |
|- ( ph -> J e. NN0 ) |
| 6 |
|
knoppndvlem8.m |
|- ( ph -> M e. ZZ ) |
| 7 |
|
knoppndvlem8.n |
|- ( ph -> N e. NN ) |
| 8 |
|
knoppndvlem8.1 |
|- ( ph -> 2 || M ) |
| 9 |
1 2 3 5 6 7
|
knoppndvlem7 |
|- ( ph -> ( ( F ` A ) ` J ) = ( ( C ^ J ) x. ( T ` ( M / 2 ) ) ) ) |
| 10 |
|
2z |
|- 2 e. ZZ |
| 11 |
10
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 12 |
|
2ne0 |
|- 2 =/= 0 |
| 13 |
12
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 14 |
11 13 6
|
3jca |
|- ( ph -> ( 2 e. ZZ /\ 2 =/= 0 /\ M e. ZZ ) ) |
| 15 |
|
dvdsval2 |
|- ( ( 2 e. ZZ /\ 2 =/= 0 /\ M e. ZZ ) -> ( 2 || M <-> ( M / 2 ) e. ZZ ) ) |
| 16 |
14 15
|
syl |
|- ( ph -> ( 2 || M <-> ( M / 2 ) e. ZZ ) ) |
| 17 |
8 16
|
mpbid |
|- ( ph -> ( M / 2 ) e. ZZ ) |
| 18 |
1 17
|
dnizeq0 |
|- ( ph -> ( T ` ( M / 2 ) ) = 0 ) |
| 19 |
18
|
oveq2d |
|- ( ph -> ( ( C ^ J ) x. ( T ` ( M / 2 ) ) ) = ( ( C ^ J ) x. 0 ) ) |
| 20 |
4
|
knoppndvlem3 |
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
| 21 |
20
|
simpld |
|- ( ph -> C e. RR ) |
| 22 |
21
|
recnd |
|- ( ph -> C e. CC ) |
| 23 |
22 5
|
expcld |
|- ( ph -> ( C ^ J ) e. CC ) |
| 24 |
23
|
mul01d |
|- ( ph -> ( ( C ^ J ) x. 0 ) = 0 ) |
| 25 |
9 19 24
|
3eqtrd |
|- ( ph -> ( ( F ` A ) ` J ) = 0 ) |