| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dnizeq0.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
dnizeq0.1 |
|- ( ph -> A e. ZZ ) |
| 3 |
2
|
zred |
|- ( ph -> A e. RR ) |
| 4 |
1
|
dnival |
|- ( A e. RR -> ( T ` A ) = ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) |
| 5 |
3 4
|
syl |
|- ( ph -> ( T ` A ) = ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) |
| 6 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 7 |
6
|
a1i |
|- ( ph -> ( 1 / 2 ) e. RR ) |
| 8 |
2 7
|
jca |
|- ( ph -> ( A e. ZZ /\ ( 1 / 2 ) e. RR ) ) |
| 9 |
|
flzadd |
|- ( ( A e. ZZ /\ ( 1 / 2 ) e. RR ) -> ( |_ ` ( A + ( 1 / 2 ) ) ) = ( A + ( |_ ` ( 1 / 2 ) ) ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( |_ ` ( A + ( 1 / 2 ) ) ) = ( A + ( |_ ` ( 1 / 2 ) ) ) ) |
| 11 |
6
|
rexri |
|- ( 1 / 2 ) e. RR* |
| 12 |
|
0re |
|- 0 e. RR |
| 13 |
|
halfgt0 |
|- 0 < ( 1 / 2 ) |
| 14 |
12 6 13
|
ltleii |
|- 0 <_ ( 1 / 2 ) |
| 15 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
| 16 |
11 14 15
|
3pm3.2i |
|- ( ( 1 / 2 ) e. RR* /\ 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) < 1 ) |
| 17 |
|
0xr |
|- 0 e. RR* |
| 18 |
|
1xr |
|- 1 e. RR* |
| 19 |
17 18
|
pm3.2i |
|- ( 0 e. RR* /\ 1 e. RR* ) |
| 20 |
|
elico1 |
|- ( ( 0 e. RR* /\ 1 e. RR* ) -> ( ( 1 / 2 ) e. ( 0 [,) 1 ) <-> ( ( 1 / 2 ) e. RR* /\ 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) < 1 ) ) ) |
| 21 |
19 20
|
ax-mp |
|- ( ( 1 / 2 ) e. ( 0 [,) 1 ) <-> ( ( 1 / 2 ) e. RR* /\ 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) < 1 ) ) |
| 22 |
16 21
|
mpbir |
|- ( 1 / 2 ) e. ( 0 [,) 1 ) |
| 23 |
22
|
a1i |
|- ( ph -> ( 1 / 2 ) e. ( 0 [,) 1 ) ) |
| 24 |
|
ico01fl0 |
|- ( ( 1 / 2 ) e. ( 0 [,) 1 ) -> ( |_ ` ( 1 / 2 ) ) = 0 ) |
| 25 |
23 24
|
syl |
|- ( ph -> ( |_ ` ( 1 / 2 ) ) = 0 ) |
| 26 |
25
|
oveq2d |
|- ( ph -> ( A + ( |_ ` ( 1 / 2 ) ) ) = ( A + 0 ) ) |
| 27 |
3
|
recnd |
|- ( ph -> A e. CC ) |
| 28 |
27
|
addridd |
|- ( ph -> ( A + 0 ) = A ) |
| 29 |
26 28
|
eqtrd |
|- ( ph -> ( A + ( |_ ` ( 1 / 2 ) ) ) = A ) |
| 30 |
10 29
|
eqtrd |
|- ( ph -> ( |_ ` ( A + ( 1 / 2 ) ) ) = A ) |
| 31 |
30
|
oveq1d |
|- ( ph -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) = ( A - A ) ) |
| 32 |
27
|
subidd |
|- ( ph -> ( A - A ) = 0 ) |
| 33 |
31 32
|
eqtrd |
|- ( ph -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) = 0 ) |
| 34 |
33
|
fveq2d |
|- ( ph -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) = ( abs ` 0 ) ) |
| 35 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
| 36 |
35
|
a1i |
|- ( ph -> ( abs ` 0 ) = 0 ) |
| 37 |
34 36
|
eqtrd |
|- ( ph -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) = 0 ) |
| 38 |
5 37
|
eqtrd |
|- ( ph -> ( T ` A ) = 0 ) |