| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dnizphlfeqhlf.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
dnizphlfeqhlf.1 |
|- ( ph -> A e. ZZ ) |
| 3 |
2
|
zred |
|- ( ph -> A e. RR ) |
| 4 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 5 |
4
|
a1i |
|- ( ph -> ( 1 / 2 ) e. RR ) |
| 6 |
3 5
|
readdcld |
|- ( ph -> ( A + ( 1 / 2 ) ) e. RR ) |
| 7 |
1
|
dnival |
|- ( ( A + ( 1 / 2 ) ) e. RR -> ( T ` ( A + ( 1 / 2 ) ) ) = ( abs ` ( ( |_ ` ( ( A + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) - ( A + ( 1 / 2 ) ) ) ) ) |
| 8 |
6 7
|
syl |
|- ( ph -> ( T ` ( A + ( 1 / 2 ) ) ) = ( abs ` ( ( |_ ` ( ( A + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) - ( A + ( 1 / 2 ) ) ) ) ) |
| 9 |
3
|
recnd |
|- ( ph -> A e. CC ) |
| 10 |
5
|
recnd |
|- ( ph -> ( 1 / 2 ) e. CC ) |
| 11 |
9 10
|
addcld |
|- ( ph -> ( A + ( 1 / 2 ) ) e. CC ) |
| 12 |
9 10 10
|
addassd |
|- ( ph -> ( ( A + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( A + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
| 13 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 14 |
13
|
2halvesd |
|- ( ph -> ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
| 15 |
14
|
oveq2d |
|- ( ph -> ( A + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( A + 1 ) ) |
| 16 |
12 15
|
eqtrd |
|- ( ph -> ( ( A + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( A + 1 ) ) |
| 17 |
2
|
peano2zd |
|- ( ph -> ( A + 1 ) e. ZZ ) |
| 18 |
16 17
|
eqeltrd |
|- ( ph -> ( ( A + ( 1 / 2 ) ) + ( 1 / 2 ) ) e. ZZ ) |
| 19 |
|
flid |
|- ( ( ( A + ( 1 / 2 ) ) + ( 1 / 2 ) ) e. ZZ -> ( |_ ` ( ( A + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) = ( ( A + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
| 20 |
18 19
|
syl |
|- ( ph -> ( |_ ` ( ( A + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) = ( ( A + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
| 21 |
11 10 20
|
mvrladdd |
|- ( ph -> ( ( |_ ` ( ( A + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) - ( A + ( 1 / 2 ) ) ) = ( 1 / 2 ) ) |
| 22 |
21
|
fveq2d |
|- ( ph -> ( abs ` ( ( |_ ` ( ( A + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) - ( A + ( 1 / 2 ) ) ) ) = ( abs ` ( 1 / 2 ) ) ) |
| 23 |
|
halfgt0 |
|- 0 < ( 1 / 2 ) |
| 24 |
|
0re |
|- 0 e. RR |
| 25 |
24 4
|
ltlei |
|- ( 0 < ( 1 / 2 ) -> 0 <_ ( 1 / 2 ) ) |
| 26 |
23 25
|
ax-mp |
|- 0 <_ ( 1 / 2 ) |
| 27 |
26
|
a1i |
|- ( ph -> 0 <_ ( 1 / 2 ) ) |
| 28 |
5 27
|
absidd |
|- ( ph -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) |
| 29 |
8 22 28
|
3eqtrd |
|- ( ph -> ( T ` ( A + ( 1 / 2 ) ) ) = ( 1 / 2 ) ) |