Step |
Hyp |
Ref |
Expression |
1 |
|
dnizphlfeqhlf.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
dnizphlfeqhlf.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
3 |
2
|
zred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
4 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
5 |
4
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
6 |
3 5
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) |
7 |
1
|
dnival |
⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( 𝑇 ‘ ( 𝐴 + ( 1 / 2 ) ) ) = ( abs ‘ ( ( ⌊ ‘ ( ( 𝐴 + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) − ( 𝐴 + ( 1 / 2 ) ) ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → ( 𝑇 ‘ ( 𝐴 + ( 1 / 2 ) ) ) = ( abs ‘ ( ( ⌊ ‘ ( ( 𝐴 + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) − ( 𝐴 + ( 1 / 2 ) ) ) ) ) |
9 |
3
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
10 |
5
|
recnd |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℂ ) |
11 |
9 10
|
addcld |
⊢ ( 𝜑 → ( 𝐴 + ( 1 / 2 ) ) ∈ ℂ ) |
12 |
9 10 10
|
addassd |
⊢ ( 𝜑 → ( ( 𝐴 + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( 𝐴 + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
13 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
14 |
13
|
2halvesd |
⊢ ( 𝜑 → ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
15 |
14
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( 𝐴 + 1 ) ) |
16 |
12 15
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( 𝐴 + 1 ) ) |
17 |
2
|
peano2zd |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℤ ) |
18 |
16 17
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐴 + ( 1 / 2 ) ) + ( 1 / 2 ) ) ∈ ℤ ) |
19 |
|
flid |
⊢ ( ( ( 𝐴 + ( 1 / 2 ) ) + ( 1 / 2 ) ) ∈ ℤ → ( ⌊ ‘ ( ( 𝐴 + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) = ( ( 𝐴 + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐴 + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) = ( ( 𝐴 + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
21 |
11 10 20
|
mvrladdd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 𝐴 + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) − ( 𝐴 + ( 1 / 2 ) ) ) = ( 1 / 2 ) ) |
22 |
21
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( ⌊ ‘ ( ( 𝐴 + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) − ( 𝐴 + ( 1 / 2 ) ) ) ) = ( abs ‘ ( 1 / 2 ) ) ) |
23 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
24 |
|
0re |
⊢ 0 ∈ ℝ |
25 |
24 4
|
ltlei |
⊢ ( 0 < ( 1 / 2 ) → 0 ≤ ( 1 / 2 ) ) |
26 |
23 25
|
ax-mp |
⊢ 0 ≤ ( 1 / 2 ) |
27 |
26
|
a1i |
⊢ ( 𝜑 → 0 ≤ ( 1 / 2 ) ) |
28 |
5 27
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) ) |
29 |
8 22 28
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑇 ‘ ( 𝐴 + ( 1 / 2 ) ) ) = ( 1 / 2 ) ) |