Metamath Proof Explorer


Theorem dnizeq0

Description: The distance to nearest integer is zero for integers. (Contributed by Asger C. Ipsen, 15-Jun-2021)

Ref Expression
Hypotheses dnizeq0.t T=xx+12x
dnizeq0.1 φA
Assertion dnizeq0 φTA=0

Proof

Step Hyp Ref Expression
1 dnizeq0.t T=xx+12x
2 dnizeq0.1 φA
3 2 zred φA
4 1 dnival ATA=A+12A
5 3 4 syl φTA=A+12A
6 halfre 12
7 6 a1i φ12
8 2 7 jca φA12
9 flzadd A12A+12=A+12
10 8 9 syl φA+12=A+12
11 6 rexri 12*
12 0re 0
13 halfgt0 0<12
14 12 6 13 ltleii 012
15 halflt1 12<1
16 11 14 15 3pm3.2i 12*01212<1
17 0xr 0*
18 1xr 1*
19 17 18 pm3.2i 0*1*
20 elico1 0*1*120112*01212<1
21 19 20 ax-mp 120112*01212<1
22 16 21 mpbir 1201
23 22 a1i φ1201
24 ico01fl0 120112=0
25 23 24 syl φ12=0
26 25 oveq2d φA+12=A+0
27 3 recnd φA
28 27 addridd φA+0=A
29 26 28 eqtrd φA+12=A
30 10 29 eqtrd φA+12=A
31 30 oveq1d φA+12A=AA
32 27 subidd φAA=0
33 31 32 eqtrd φA+12A=0
34 33 fveq2d φA+12A=0
35 abs0 0=0
36 35 a1i φ0=0
37 34 36 eqtrd φA+12A=0
38 5 37 eqtrd φTA=0