Metamath Proof Explorer


Theorem knoppndvlem8

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem8.t T = x x + 1 2 x
knoppndvlem8.f F = y n 0 C n T 2 N n y
knoppndvlem8.a A = 2 N J 2 M
knoppndvlem8.c φ C 1 1
knoppndvlem8.j φ J 0
knoppndvlem8.m φ M
knoppndvlem8.n φ N
knoppndvlem8.1 φ 2 M
Assertion knoppndvlem8 φ F A J = 0

Proof

Step Hyp Ref Expression
1 knoppndvlem8.t T = x x + 1 2 x
2 knoppndvlem8.f F = y n 0 C n T 2 N n y
3 knoppndvlem8.a A = 2 N J 2 M
4 knoppndvlem8.c φ C 1 1
5 knoppndvlem8.j φ J 0
6 knoppndvlem8.m φ M
7 knoppndvlem8.n φ N
8 knoppndvlem8.1 φ 2 M
9 1 2 3 5 6 7 knoppndvlem7 φ F A J = C J T M 2
10 2z 2
11 10 a1i φ 2
12 2ne0 2 0
13 12 a1i φ 2 0
14 11 13 6 3jca φ 2 2 0 M
15 dvdsval2 2 2 0 M 2 M M 2
16 14 15 syl φ 2 M M 2
17 8 16 mpbid φ M 2
18 1 17 dnizeq0 φ T M 2 = 0
19 18 oveq2d φ C J T M 2 = C J 0
20 4 knoppndvlem3 φ C C < 1
21 20 simpld φ C
22 21 recnd φ C
23 22 5 expcld φ C J
24 23 mul01d φ C J 0 = 0
25 9 19 24 3eqtrd φ F A J = 0