| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndvlem9.t |
|
| 2 |
|
knoppndvlem9.f |
|
| 3 |
|
knoppndvlem9.a |
|
| 4 |
|
knoppndvlem9.c |
|
| 5 |
|
knoppndvlem9.j |
|
| 6 |
|
knoppndvlem9.m |
|
| 7 |
|
knoppndvlem9.n |
|
| 8 |
|
knoppndvlem9.1 |
|
| 9 |
1 2 3 5 6 7
|
knoppndvlem7 |
|
| 10 |
|
odd2np1 |
|
| 11 |
6 10
|
syl |
|
| 12 |
8 11
|
mpbid |
|
| 13 |
|
eqcom |
|
| 14 |
13
|
biimpi |
|
| 15 |
14
|
oveq1d |
|
| 16 |
15
|
adantl |
|
| 17 |
16
|
adantl |
|
| 18 |
|
2cnd |
|
| 19 |
|
zcn |
|
| 20 |
19
|
adantl |
|
| 21 |
18 20
|
mulcld |
|
| 22 |
|
1cnd |
|
| 23 |
|
2ne0 |
|
| 24 |
23
|
a1i |
|
| 25 |
21 22 18 24
|
divdird |
|
| 26 |
20 18 24
|
divcan3d |
|
| 27 |
26
|
oveq1d |
|
| 28 |
25 27
|
eqtrd |
|
| 29 |
28
|
adantrr |
|
| 30 |
17 29
|
eqtrd |
|
| 31 |
30
|
fveq2d |
|
| 32 |
|
id |
|
| 33 |
1 32
|
dnizphlfeqhlf |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
adantrr |
|
| 36 |
31 35
|
eqtrd |
|
| 37 |
12 36
|
rexlimddv |
|
| 38 |
37
|
oveq2d |
|
| 39 |
4
|
knoppndvlem3 |
|
| 40 |
39
|
simpld |
|
| 41 |
40
|
recnd |
|
| 42 |
41 5
|
expcld |
|
| 43 |
|
1cnd |
|
| 44 |
|
2cnd |
|
| 45 |
23
|
a1i |
|
| 46 |
42 43 44 45
|
div12d |
|
| 47 |
42 44 45
|
divcld |
|
| 48 |
47
|
mullidd |
|
| 49 |
46 48
|
eqtrd |
|
| 50 |
9 38 49
|
3eqtrd |
|