Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem9.t |
|
2 |
|
knoppndvlem9.f |
|
3 |
|
knoppndvlem9.a |
|
4 |
|
knoppndvlem9.c |
|
5 |
|
knoppndvlem9.j |
|
6 |
|
knoppndvlem9.m |
|
7 |
|
knoppndvlem9.n |
|
8 |
|
knoppndvlem9.1 |
|
9 |
1 2 3 5 6 7
|
knoppndvlem7 |
|
10 |
|
odd2np1 |
|
11 |
6 10
|
syl |
|
12 |
8 11
|
mpbid |
|
13 |
|
eqcom |
|
14 |
13
|
biimpi |
|
15 |
14
|
oveq1d |
|
16 |
15
|
adantl |
|
17 |
16
|
adantl |
|
18 |
|
2cnd |
|
19 |
|
zcn |
|
20 |
19
|
adantl |
|
21 |
18 20
|
mulcld |
|
22 |
|
1cnd |
|
23 |
|
2ne0 |
|
24 |
23
|
a1i |
|
25 |
21 22 18 24
|
divdird |
|
26 |
20 18 24
|
divcan3d |
|
27 |
26
|
oveq1d |
|
28 |
25 27
|
eqtrd |
|
29 |
28
|
adantrr |
|
30 |
17 29
|
eqtrd |
|
31 |
30
|
fveq2d |
|
32 |
|
id |
|
33 |
1 32
|
dnizphlfeqhlf |
|
34 |
33
|
adantl |
|
35 |
34
|
adantrr |
|
36 |
31 35
|
eqtrd |
|
37 |
12 36
|
rexlimddv |
|
38 |
37
|
oveq2d |
|
39 |
4
|
knoppndvlem3 |
|
40 |
39
|
simpld |
|
41 |
40
|
recnd |
|
42 |
41 5
|
expcld |
|
43 |
|
1cnd |
|
44 |
|
2cnd |
|
45 |
23
|
a1i |
|
46 |
42 43 44 45
|
div12d |
|
47 |
42 44 45
|
divcld |
|
48 |
47
|
mulid2d |
|
49 |
46 48
|
eqtrd |
|
50 |
9 38 49
|
3eqtrd |
|