| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndvlem10.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppndvlem10.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 3 |
|
knoppndvlem10.a |
|- A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) |
| 4 |
|
knoppndvlem10.b |
|- B = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) |
| 5 |
|
knoppndvlem10.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
| 6 |
|
knoppndvlem10.j |
|- ( ph -> J e. NN0 ) |
| 7 |
|
knoppndvlem10.m |
|- ( ph -> M e. ZZ ) |
| 8 |
|
knoppndvlem10.n |
|- ( ph -> N e. NN ) |
| 9 |
5
|
adantr |
|- ( ( ph /\ 2 || M ) -> C e. ( -u 1 (,) 1 ) ) |
| 10 |
6
|
adantr |
|- ( ( ph /\ 2 || M ) -> J e. NN0 ) |
| 11 |
7
|
peano2zd |
|- ( ph -> ( M + 1 ) e. ZZ ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ 2 || M ) -> ( M + 1 ) e. ZZ ) |
| 13 |
8
|
adantr |
|- ( ( ph /\ 2 || M ) -> N e. NN ) |
| 14 |
|
notnot |
|- ( 2 || M -> -. -. 2 || M ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ 2 || M ) -> -. -. 2 || M ) |
| 16 |
7
|
adantr |
|- ( ( ph /\ 2 || M ) -> M e. ZZ ) |
| 17 |
|
oddp1even |
|- ( M e. ZZ -> ( -. 2 || M <-> 2 || ( M + 1 ) ) ) |
| 18 |
16 17
|
syl |
|- ( ( ph /\ 2 || M ) -> ( -. 2 || M <-> 2 || ( M + 1 ) ) ) |
| 19 |
15 18
|
mtbid |
|- ( ( ph /\ 2 || M ) -> -. 2 || ( M + 1 ) ) |
| 20 |
1 2 4 9 10 12 13 19
|
knoppndvlem9 |
|- ( ( ph /\ 2 || M ) -> ( ( F ` B ) ` J ) = ( ( C ^ J ) / 2 ) ) |
| 21 |
15
|
notnotrd |
|- ( ( ph /\ 2 || M ) -> 2 || M ) |
| 22 |
1 2 3 9 10 16 13 21
|
knoppndvlem8 |
|- ( ( ph /\ 2 || M ) -> ( ( F ` A ) ` J ) = 0 ) |
| 23 |
20 22
|
oveq12d |
|- ( ( ph /\ 2 || M ) -> ( ( ( F ` B ) ` J ) - ( ( F ` A ) ` J ) ) = ( ( ( C ^ J ) / 2 ) - 0 ) ) |
| 24 |
5
|
knoppndvlem3 |
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
| 25 |
24
|
simpld |
|- ( ph -> C e. RR ) |
| 26 |
25
|
recnd |
|- ( ph -> C e. CC ) |
| 27 |
26 6
|
expcld |
|- ( ph -> ( C ^ J ) e. CC ) |
| 28 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 29 |
|
2ne0 |
|- 2 =/= 0 |
| 30 |
29
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 31 |
27 28 30
|
divcld |
|- ( ph -> ( ( C ^ J ) / 2 ) e. CC ) |
| 32 |
31
|
subid1d |
|- ( ph -> ( ( ( C ^ J ) / 2 ) - 0 ) = ( ( C ^ J ) / 2 ) ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ 2 || M ) -> ( ( ( C ^ J ) / 2 ) - 0 ) = ( ( C ^ J ) / 2 ) ) |
| 34 |
23 33
|
eqtrd |
|- ( ( ph /\ 2 || M ) -> ( ( ( F ` B ) ` J ) - ( ( F ` A ) ` J ) ) = ( ( C ^ J ) / 2 ) ) |
| 35 |
34
|
fveq2d |
|- ( ( ph /\ 2 || M ) -> ( abs ` ( ( ( F ` B ) ` J ) - ( ( F ` A ) ` J ) ) ) = ( abs ` ( ( C ^ J ) / 2 ) ) ) |
| 36 |
4
|
a1i |
|- ( ph -> B = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) ) |
| 37 |
6
|
nn0zd |
|- ( ph -> J e. ZZ ) |
| 38 |
8 37 11
|
knoppndvlem1 |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) e. RR ) |
| 39 |
36 38
|
eqeltrd |
|- ( ph -> B e. RR ) |
| 40 |
1 2 8 25 39 6
|
knoppcnlem3 |
|- ( ph -> ( ( F ` B ) ` J ) e. RR ) |
| 41 |
40
|
recnd |
|- ( ph -> ( ( F ` B ) ` J ) e. CC ) |
| 42 |
3
|
a1i |
|- ( ph -> A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) |
| 43 |
8 37 7
|
knoppndvlem1 |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) e. RR ) |
| 44 |
42 43
|
eqeltrd |
|- ( ph -> A e. RR ) |
| 45 |
1 2 8 25 44 6
|
knoppcnlem3 |
|- ( ph -> ( ( F ` A ) ` J ) e. RR ) |
| 46 |
45
|
recnd |
|- ( ph -> ( ( F ` A ) ` J ) e. CC ) |
| 47 |
41 46
|
abssubd |
|- ( ph -> ( abs ` ( ( ( F ` B ) ` J ) - ( ( F ` A ) ` J ) ) ) = ( abs ` ( ( ( F ` A ) ` J ) - ( ( F ` B ) ` J ) ) ) ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ -. 2 || M ) -> ( abs ` ( ( ( F ` B ) ` J ) - ( ( F ` A ) ` J ) ) ) = ( abs ` ( ( ( F ` A ) ` J ) - ( ( F ` B ) ` J ) ) ) ) |
| 49 |
5
|
adantr |
|- ( ( ph /\ -. 2 || M ) -> C e. ( -u 1 (,) 1 ) ) |
| 50 |
6
|
adantr |
|- ( ( ph /\ -. 2 || M ) -> J e. NN0 ) |
| 51 |
7
|
adantr |
|- ( ( ph /\ -. 2 || M ) -> M e. ZZ ) |
| 52 |
8
|
adantr |
|- ( ( ph /\ -. 2 || M ) -> N e. NN ) |
| 53 |
|
simpr |
|- ( ( ph /\ -. 2 || M ) -> -. 2 || M ) |
| 54 |
1 2 3 49 50 51 52 53
|
knoppndvlem9 |
|- ( ( ph /\ -. 2 || M ) -> ( ( F ` A ) ` J ) = ( ( C ^ J ) / 2 ) ) |
| 55 |
11
|
adantr |
|- ( ( ph /\ -. 2 || M ) -> ( M + 1 ) e. ZZ ) |
| 56 |
51 17
|
syl |
|- ( ( ph /\ -. 2 || M ) -> ( -. 2 || M <-> 2 || ( M + 1 ) ) ) |
| 57 |
53 56
|
mpbid |
|- ( ( ph /\ -. 2 || M ) -> 2 || ( M + 1 ) ) |
| 58 |
1 2 4 49 50 55 52 57
|
knoppndvlem8 |
|- ( ( ph /\ -. 2 || M ) -> ( ( F ` B ) ` J ) = 0 ) |
| 59 |
54 58
|
oveq12d |
|- ( ( ph /\ -. 2 || M ) -> ( ( ( F ` A ) ` J ) - ( ( F ` B ) ` J ) ) = ( ( ( C ^ J ) / 2 ) - 0 ) ) |
| 60 |
32
|
adantr |
|- ( ( ph /\ -. 2 || M ) -> ( ( ( C ^ J ) / 2 ) - 0 ) = ( ( C ^ J ) / 2 ) ) |
| 61 |
59 60
|
eqtrd |
|- ( ( ph /\ -. 2 || M ) -> ( ( ( F ` A ) ` J ) - ( ( F ` B ) ` J ) ) = ( ( C ^ J ) / 2 ) ) |
| 62 |
61
|
fveq2d |
|- ( ( ph /\ -. 2 || M ) -> ( abs ` ( ( ( F ` A ) ` J ) - ( ( F ` B ) ` J ) ) ) = ( abs ` ( ( C ^ J ) / 2 ) ) ) |
| 63 |
48 62
|
eqtrd |
|- ( ( ph /\ -. 2 || M ) -> ( abs ` ( ( ( F ` B ) ` J ) - ( ( F ` A ) ` J ) ) ) = ( abs ` ( ( C ^ J ) / 2 ) ) ) |
| 64 |
35 63
|
pm2.61dan |
|- ( ph -> ( abs ` ( ( ( F ` B ) ` J ) - ( ( F ` A ) ` J ) ) ) = ( abs ` ( ( C ^ J ) / 2 ) ) ) |
| 65 |
27 28 30
|
absdivd |
|- ( ph -> ( abs ` ( ( C ^ J ) / 2 ) ) = ( ( abs ` ( C ^ J ) ) / ( abs ` 2 ) ) ) |
| 66 |
26 6
|
absexpd |
|- ( ph -> ( abs ` ( C ^ J ) ) = ( ( abs ` C ) ^ J ) ) |
| 67 |
|
0le2 |
|- 0 <_ 2 |
| 68 |
|
2re |
|- 2 e. RR |
| 69 |
68
|
absidi |
|- ( 0 <_ 2 -> ( abs ` 2 ) = 2 ) |
| 70 |
67 69
|
ax-mp |
|- ( abs ` 2 ) = 2 |
| 71 |
70
|
a1i |
|- ( ph -> ( abs ` 2 ) = 2 ) |
| 72 |
66 71
|
oveq12d |
|- ( ph -> ( ( abs ` ( C ^ J ) ) / ( abs ` 2 ) ) = ( ( ( abs ` C ) ^ J ) / 2 ) ) |
| 73 |
65 72
|
eqtrd |
|- ( ph -> ( abs ` ( ( C ^ J ) / 2 ) ) = ( ( ( abs ` C ) ^ J ) / 2 ) ) |
| 74 |
64 73
|
eqtrd |
|- ( ph -> ( abs ` ( ( ( F ` B ) ` J ) - ( ( F ` A ) ` J ) ) ) = ( ( ( abs ` C ) ^ J ) / 2 ) ) |