Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem6.t |
|
2 |
|
knoppndvlem6.f |
|
3 |
|
knoppndvlem6.w |
|
4 |
|
knoppndvlem6.a |
|
5 |
|
knoppndvlem6.c |
|
6 |
|
knoppndvlem6.j |
|
7 |
|
knoppndvlem6.m |
|
8 |
|
knoppndvlem6.n |
|
9 |
|
fveq2 |
|
10 |
9
|
fveq1d |
|
11 |
10
|
sumeq2sdv |
|
12 |
4
|
a1i |
|
13 |
6
|
nn0zd |
|
14 |
8 13 7
|
knoppndvlem1 |
|
15 |
12 14
|
eqeltrd |
|
16 |
|
sumex |
|
17 |
16
|
a1i |
|
18 |
3 11 15 17
|
fvmptd3 |
|
19 |
|
nn0uz |
|
20 |
|
eqid |
|
21 |
|
peano2nn0 |
|
22 |
6 21
|
syl |
|
23 |
|
eqidd |
|
24 |
8
|
adantr |
|
25 |
5
|
knoppndvlem3 |
|
26 |
25
|
simpld |
|
27 |
26
|
adantr |
|
28 |
15
|
adantr |
|
29 |
|
simpr |
|
30 |
1 2 24 27 28 29
|
knoppcnlem3 |
|
31 |
30
|
recnd |
|
32 |
1 2 3 15 5 8
|
knoppndvlem4 |
|
33 |
|
seqex |
|
34 |
|
fvex |
|
35 |
33 34
|
breldm |
|
36 |
32 35
|
syl |
|
37 |
19 20 22 23 31 36
|
isumsplit |
|
38 |
6
|
nn0cnd |
|
39 |
|
1cnd |
|
40 |
38 39
|
pncand |
|
41 |
40
|
oveq2d |
|
42 |
41
|
sumeq1d |
|
43 |
42
|
oveq1d |
|
44 |
18 37 43
|
3eqtrd |
|
45 |
15
|
adantr |
|
46 |
|
eluznn0 |
|
47 |
22 46
|
sylan |
|
48 |
2 45 47
|
knoppcnlem1 |
|
49 |
4
|
a1i |
|
50 |
49
|
oveq2d |
|
51 |
8
|
adantr |
|
52 |
47
|
nn0zd |
|
53 |
13
|
adantr |
|
54 |
7
|
adantr |
|
55 |
|
eluzle |
|
56 |
55
|
adantl |
|
57 |
53 52
|
jca |
|
58 |
|
zltp1le |
|
59 |
57 58
|
syl |
|
60 |
56 59
|
mpbird |
|
61 |
51 52 53 54 60
|
knoppndvlem2 |
|
62 |
50 61
|
eqeltrd |
|
63 |
1 62
|
dnizeq0 |
|
64 |
63
|
oveq2d |
|
65 |
26
|
recnd |
|
66 |
65
|
adantr |
|
67 |
66 47
|
expcld |
|
68 |
67
|
mul01d |
|
69 |
48 64 68
|
3eqtrd |
|
70 |
69
|
sumeq2dv |
|
71 |
|
ssidd |
|
72 |
71
|
orcd |
|
73 |
|
sumz |
|
74 |
72 73
|
syl |
|
75 |
70 74
|
eqtrd |
|
76 |
75
|
oveq2d |
|
77 |
1 2 15 26 8
|
knoppndvlem5 |
|
78 |
77
|
recnd |
|
79 |
78
|
addid1d |
|
80 |
76 79
|
eqtrd |
|
81 |
44 80
|
eqtrd |
|