Metamath Proof Explorer


Theorem knoppndvlem6

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem6.t T=xx+12x
knoppndvlem6.f F=yn0CnT2 Nny
knoppndvlem6.w W=wi0Fwi
knoppndvlem6.a A=2 NJ2 M
knoppndvlem6.c φC11
knoppndvlem6.j φJ0
knoppndvlem6.m φM
knoppndvlem6.n φN
Assertion knoppndvlem6 φWA=i=0JFAi

Proof

Step Hyp Ref Expression
1 knoppndvlem6.t T=xx+12x
2 knoppndvlem6.f F=yn0CnT2 Nny
3 knoppndvlem6.w W=wi0Fwi
4 knoppndvlem6.a A=2 NJ2 M
5 knoppndvlem6.c φC11
6 knoppndvlem6.j φJ0
7 knoppndvlem6.m φM
8 knoppndvlem6.n φN
9 fveq2 w=AFw=FA
10 9 fveq1d w=AFwi=FAi
11 10 sumeq2sdv w=Ai0Fwi=i0FAi
12 4 a1i φA=2 NJ2 M
13 6 nn0zd φJ
14 8 13 7 knoppndvlem1 φ2 NJ2 M
15 12 14 eqeltrd φA
16 sumex i0FAiV
17 16 a1i φi0FAiV
18 3 11 15 17 fvmptd3 φWA=i0FAi
19 nn0uz 0=0
20 eqid J+1=J+1
21 peano2nn0 J0J+10
22 6 21 syl φJ+10
23 eqidd φi0FAi=FAi
24 8 adantr φi0N
25 5 knoppndvlem3 φCC<1
26 25 simpld φC
27 26 adantr φi0C
28 15 adantr φi0A
29 simpr φi0i0
30 1 2 24 27 28 29 knoppcnlem3 φi0FAi
31 30 recnd φi0FAi
32 1 2 3 15 5 8 knoppndvlem4 φseq0+FAWA
33 seqex seq0+FAV
34 fvex WAV
35 33 34 breldm seq0+FAWAseq0+FAdom
36 32 35 syl φseq0+FAdom
37 19 20 22 23 31 36 isumsplit φi0FAi=i=0J+1-1FAi+iJ+1FAi
38 6 nn0cnd φJ
39 1cnd φ1
40 38 39 pncand φJ+1-1=J
41 40 oveq2d φ0J+1-1=0J
42 41 sumeq1d φi=0J+1-1FAi=i=0JFAi
43 42 oveq1d φi=0J+1-1FAi+iJ+1FAi=i=0JFAi+iJ+1FAi
44 18 37 43 3eqtrd φWA=i=0JFAi+iJ+1FAi
45 15 adantr φiJ+1A
46 eluznn0 J+10iJ+1i0
47 22 46 sylan φiJ+1i0
48 2 45 47 knoppcnlem1 φiJ+1FAi=CiT2 NiA
49 4 a1i φiJ+1A=2 NJ2 M
50 49 oveq2d φiJ+12 NiA=2 Ni2 NJ2 M
51 8 adantr φiJ+1N
52 47 nn0zd φiJ+1i
53 13 adantr φiJ+1J
54 7 adantr φiJ+1M
55 eluzle iJ+1J+1i
56 55 adantl φiJ+1J+1i
57 53 52 jca φiJ+1Ji
58 zltp1le JiJ<iJ+1i
59 57 58 syl φiJ+1J<iJ+1i
60 56 59 mpbird φiJ+1J<i
61 51 52 53 54 60 knoppndvlem2 φiJ+12 Ni2 NJ2 M
62 50 61 eqeltrd φiJ+12 NiA
63 1 62 dnizeq0 φiJ+1T2 NiA=0
64 63 oveq2d φiJ+1CiT2 NiA=Ci0
65 26 recnd φC
66 65 adantr φiJ+1C
67 66 47 expcld φiJ+1Ci
68 67 mul01d φiJ+1Ci0=0
69 48 64 68 3eqtrd φiJ+1FAi=0
70 69 sumeq2dv φiJ+1FAi=iJ+10
71 ssidd φJ+1J+1
72 71 orcd φJ+1J+1J+1Fin
73 sumz J+1J+1J+1FiniJ+10=0
74 72 73 syl φiJ+10=0
75 70 74 eqtrd φiJ+1FAi=0
76 75 oveq2d φi=0JFAi+iJ+1FAi=i=0JFAi+0
77 1 2 15 26 8 knoppndvlem5 φi=0JFAi
78 77 recnd φi=0JFAi
79 78 addridd φi=0JFAi+0=i=0JFAi
80 76 79 eqtrd φi=0JFAi+iJ+1FAi=i=0JFAi
81 44 80 eqtrd φWA=i=0JFAi