Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem6.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
knoppndvlem6.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
knoppndvlem6.w |
⊢ 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) |
4 |
|
knoppndvlem6.a |
⊢ 𝐴 = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) |
5 |
|
knoppndvlem6.c |
⊢ ( 𝜑 → 𝐶 ∈ ( - 1 (,) 1 ) ) |
6 |
|
knoppndvlem6.j |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
7 |
|
knoppndvlem6.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
8 |
|
knoppndvlem6.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
|
fveq2 |
⊢ ( 𝑤 = 𝐴 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝐴 ) ) |
10 |
9
|
fveq1d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) |
11 |
10
|
sumeq2sdv |
⊢ ( 𝑤 = 𝐴 → Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) |
12 |
4
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ) |
13 |
6
|
nn0zd |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
14 |
8 13 7
|
knoppndvlem1 |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ∈ ℝ ) |
15 |
12 14
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
16 |
|
sumex |
⊢ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ∈ V |
17 |
16
|
a1i |
⊢ ( 𝜑 → Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ∈ V ) |
18 |
3 11 15 17
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝐴 ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) |
19 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
20 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) = ( ℤ≥ ‘ ( 𝐽 + 1 ) ) |
21 |
|
peano2nn0 |
⊢ ( 𝐽 ∈ ℕ0 → ( 𝐽 + 1 ) ∈ ℕ0 ) |
22 |
6 21
|
syl |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ℕ0 ) |
23 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) |
24 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑁 ∈ ℕ ) |
25 |
5
|
knoppndvlem3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) ) |
26 |
25
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐶 ∈ ℝ ) |
28 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
30 |
1 2 24 27 28 29
|
knoppcnlem3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ∈ ℝ ) |
31 |
30
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) |
32 |
1 2 3 15 5 8
|
knoppndvlem4 |
⊢ ( 𝜑 → seq 0 ( + , ( 𝐹 ‘ 𝐴 ) ) ⇝ ( 𝑊 ‘ 𝐴 ) ) |
33 |
|
seqex |
⊢ seq 0 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ V |
34 |
|
fvex |
⊢ ( 𝑊 ‘ 𝐴 ) ∈ V |
35 |
33 34
|
breldm |
⊢ ( seq 0 ( + , ( 𝐹 ‘ 𝐴 ) ) ⇝ ( 𝑊 ‘ 𝐴 ) → seq 0 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
36 |
32 35
|
syl |
⊢ ( 𝜑 → seq 0 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
37 |
19 20 22 23 31 36
|
isumsplit |
⊢ ( 𝜑 → Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) = ( Σ 𝑖 ∈ ( 0 ... ( ( 𝐽 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) + Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) |
38 |
6
|
nn0cnd |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
39 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
40 |
38 39
|
pncand |
⊢ ( 𝜑 → ( ( 𝐽 + 1 ) − 1 ) = 𝐽 ) |
41 |
40
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ( 𝐽 + 1 ) − 1 ) ) = ( 0 ... 𝐽 ) ) |
42 |
41
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( ( 𝐽 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) = Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) |
43 |
42
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( 0 ... ( ( 𝐽 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) + Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) = ( Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) + Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) |
44 |
18 37 43
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝐴 ) = ( Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) + Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) |
45 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → 𝐴 ∈ ℝ ) |
46 |
|
eluznn0 |
⊢ ( ( ( 𝐽 + 1 ) ∈ ℕ0 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → 𝑖 ∈ ℕ0 ) |
47 |
22 46
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → 𝑖 ∈ ℕ0 ) |
48 |
2 45 47
|
knoppcnlem1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) = ( ( 𝐶 ↑ 𝑖 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) |
49 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → 𝐴 = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ) |
50 |
49
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) = ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ) ) |
51 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → 𝑁 ∈ ℕ ) |
52 |
47
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → 𝑖 ∈ ℤ ) |
53 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → 𝐽 ∈ ℤ ) |
54 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → 𝑀 ∈ ℤ ) |
55 |
|
eluzle |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) → ( 𝐽 + 1 ) ≤ 𝑖 ) |
56 |
55
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → ( 𝐽 + 1 ) ≤ 𝑖 ) |
57 |
53 52
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → ( 𝐽 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ) |
58 |
|
zltp1le |
⊢ ( ( 𝐽 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 𝐽 < 𝑖 ↔ ( 𝐽 + 1 ) ≤ 𝑖 ) ) |
59 |
57 58
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → ( 𝐽 < 𝑖 ↔ ( 𝐽 + 1 ) ≤ 𝑖 ) ) |
60 |
56 59
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → 𝐽 < 𝑖 ) |
61 |
51 52 53 54 60
|
knoppndvlem2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ) ∈ ℤ ) |
62 |
50 61
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ∈ ℤ ) |
63 |
1 62
|
dnizeq0 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) = 0 ) |
64 |
63
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → ( ( 𝐶 ↑ 𝑖 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) = ( ( 𝐶 ↑ 𝑖 ) · 0 ) ) |
65 |
26
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → 𝐶 ∈ ℂ ) |
67 |
66 47
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → ( 𝐶 ↑ 𝑖 ) ∈ ℂ ) |
68 |
67
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → ( ( 𝐶 ↑ 𝑖 ) · 0 ) = 0 ) |
69 |
48 64 68
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) = 0 ) |
70 |
69
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) = Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) 0 ) |
71 |
|
ssidd |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ⊆ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ) |
72 |
71
|
orcd |
⊢ ( 𝜑 → ( ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ⊆ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ∨ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ∈ Fin ) ) |
73 |
|
sumz |
⊢ ( ( ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ⊆ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ∨ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ∈ Fin ) → Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) 0 = 0 ) |
74 |
72 73
|
syl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) 0 = 0 ) |
75 |
70 74
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) = 0 ) |
76 |
75
|
oveq2d |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) + Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) = ( Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) + 0 ) ) |
77 |
1 2 15 26 8
|
knoppndvlem5 |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ∈ ℝ ) |
78 |
77
|
recnd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) |
79 |
78
|
addid1d |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) + 0 ) = Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) |
80 |
76 79
|
eqtrd |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) + Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐽 + 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) = Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) |
81 |
44 80
|
eqtrd |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝐴 ) = Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) |