Metamath Proof Explorer


Theorem knoppndvlem5

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem5.t T=xx+12x
knoppndvlem5.f F=yn0CnT2 Nny
knoppndvlem5.a φA
knoppndvlem5.c φC
knoppndvlem5.n φN
Assertion knoppndvlem5 φi=0JFAi

Proof

Step Hyp Ref Expression
1 knoppndvlem5.t T=xx+12x
2 knoppndvlem5.f F=yn0CnT2 Nny
3 knoppndvlem5.a φA
4 knoppndvlem5.c φC
5 knoppndvlem5.n φN
6 fzfid φ0JFin
7 5 adantr φi0JN
8 4 adantr φi0JC
9 3 adantr φi0JA
10 elfznn0 i0Ji0
11 10 adantl φi0Ji0
12 1 2 7 8 9 11 knoppcnlem3 φi0JFAi
13 6 12 fsumrecl φi=0JFAi