| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndvlem13.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
| 2 |
|
knoppndvlem13.n |
|- ( ph -> N e. NN ) |
| 3 |
|
knoppndvlem13.1 |
|- ( ph -> 1 < ( N x. ( abs ` C ) ) ) |
| 4 |
3
|
adantr |
|- ( ( ph /\ C = 0 ) -> 1 < ( N x. ( abs ` C ) ) ) |
| 5 |
|
0lt1 |
|- 0 < 1 |
| 6 |
|
0re |
|- 0 e. RR |
| 7 |
|
1re |
|- 1 e. RR |
| 8 |
6 7
|
ltnsymi |
|- ( 0 < 1 -> -. 1 < 0 ) |
| 9 |
5 8
|
ax-mp |
|- -. 1 < 0 |
| 10 |
9
|
a1i |
|- ( ( ph /\ C = 0 ) -> -. 1 < 0 ) |
| 11 |
|
id |
|- ( C = 0 -> C = 0 ) |
| 12 |
11
|
abs00bd |
|- ( C = 0 -> ( abs ` C ) = 0 ) |
| 13 |
12
|
oveq2d |
|- ( C = 0 -> ( N x. ( abs ` C ) ) = ( N x. 0 ) ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ C = 0 ) -> ( N x. ( abs ` C ) ) = ( N x. 0 ) ) |
| 15 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 16 |
2 15
|
syl |
|- ( ph -> N e. CC ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ C = 0 ) -> N e. CC ) |
| 18 |
17
|
mul01d |
|- ( ( ph /\ C = 0 ) -> ( N x. 0 ) = 0 ) |
| 19 |
14 18
|
eqtrd |
|- ( ( ph /\ C = 0 ) -> ( N x. ( abs ` C ) ) = 0 ) |
| 20 |
19
|
eqcomd |
|- ( ( ph /\ C = 0 ) -> 0 = ( N x. ( abs ` C ) ) ) |
| 21 |
20
|
breq2d |
|- ( ( ph /\ C = 0 ) -> ( 1 < 0 <-> 1 < ( N x. ( abs ` C ) ) ) ) |
| 22 |
10 21
|
mtbid |
|- ( ( ph /\ C = 0 ) -> -. 1 < ( N x. ( abs ` C ) ) ) |
| 23 |
4 22
|
pm2.65da |
|- ( ph -> -. C = 0 ) |
| 24 |
23
|
neqned |
|- ( ph -> C =/= 0 ) |