Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem17.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
knoppndvlem17.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
3 |
|
knoppndvlem17.w |
|- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) |
4 |
|
knoppndvlem17.a |
|- A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) |
5 |
|
knoppndvlem17.b |
|- B = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) |
6 |
|
knoppndvlem17.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
7 |
|
knoppndvlem17.j |
|- ( ph -> J e. NN0 ) |
8 |
|
knoppndvlem17.m |
|- ( ph -> M e. ZZ ) |
9 |
|
knoppndvlem17.n |
|- ( ph -> N e. NN ) |
10 |
|
knoppndvlem17.1 |
|- ( ph -> 1 < ( N x. ( abs ` C ) ) ) |
11 |
6
|
knoppndvlem3 |
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
12 |
11
|
simpld |
|- ( ph -> C e. RR ) |
13 |
12
|
recnd |
|- ( ph -> C e. CC ) |
14 |
13
|
abscld |
|- ( ph -> ( abs ` C ) e. RR ) |
15 |
14 7
|
reexpcld |
|- ( ph -> ( ( abs ` C ) ^ J ) e. RR ) |
16 |
|
2re |
|- 2 e. RR |
17 |
16
|
a1i |
|- ( ph -> 2 e. RR ) |
18 |
|
2ne0 |
|- 2 =/= 0 |
19 |
18
|
a1i |
|- ( ph -> 2 =/= 0 ) |
20 |
15 17 19
|
redivcld |
|- ( ph -> ( ( ( abs ` C ) ^ J ) / 2 ) e. RR ) |
21 |
20
|
recnd |
|- ( ph -> ( ( ( abs ` C ) ^ J ) / 2 ) e. CC ) |
22 |
|
1red |
|- ( ph -> 1 e. RR ) |
23 |
9
|
nnred |
|- ( ph -> N e. RR ) |
24 |
17 23
|
remulcld |
|- ( ph -> ( 2 x. N ) e. RR ) |
25 |
24 14
|
remulcld |
|- ( ph -> ( ( 2 x. N ) x. ( abs ` C ) ) e. RR ) |
26 |
25 22
|
resubcld |
|- ( ph -> ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) e. RR ) |
27 |
|
0red |
|- ( ph -> 0 e. RR ) |
28 |
|
0lt1 |
|- 0 < 1 |
29 |
28
|
a1i |
|- ( ph -> 0 < 1 ) |
30 |
6 9 10
|
knoppndvlem12 |
|- ( ph -> ( ( ( 2 x. N ) x. ( abs ` C ) ) =/= 1 /\ 1 < ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) |
31 |
30
|
simprd |
|- ( ph -> 1 < ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) |
32 |
27 22 26 29 31
|
lttrd |
|- ( ph -> 0 < ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) |
33 |
26 32
|
jca |
|- ( ph -> ( ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) e. RR /\ 0 < ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) |
34 |
|
gt0ne0 |
|- ( ( ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) e. RR /\ 0 < ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) -> ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) =/= 0 ) |
35 |
33 34
|
syl |
|- ( ph -> ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) =/= 0 ) |
36 |
22 26 35
|
redivcld |
|- ( ph -> ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) e. RR ) |
37 |
22 36
|
resubcld |
|- ( ph -> ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) e. RR ) |
38 |
37
|
recnd |
|- ( ph -> ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) e. CC ) |
39 |
21 38
|
mulcomd |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) / 2 ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) = ( ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) x. ( ( ( abs ` C ) ^ J ) / 2 ) ) ) |
40 |
39
|
oveq1d |
|- ( ph -> ( ( ( ( ( abs ` C ) ^ J ) / 2 ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) x. ( ( ( abs ` C ) ^ J ) / 2 ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) |
41 |
|
2rp |
|- 2 e. RR+ |
42 |
41
|
a1i |
|- ( ph -> 2 e. RR+ ) |
43 |
9
|
nnrpd |
|- ( ph -> N e. RR+ ) |
44 |
42 43
|
rpmulcld |
|- ( ph -> ( 2 x. N ) e. RR+ ) |
45 |
7
|
nn0zd |
|- ( ph -> J e. ZZ ) |
46 |
45
|
znegcld |
|- ( ph -> -u J e. ZZ ) |
47 |
44 46
|
rpexpcld |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) e. RR+ ) |
48 |
47
|
rphalfcld |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. RR+ ) |
49 |
48
|
rpcnd |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. CC ) |
50 |
48
|
rpne0d |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) =/= 0 ) |
51 |
38 21 49 50
|
divassd |
|- ( ph -> ( ( ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) x. ( ( ( abs ` C ) ^ J ) / 2 ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) x. ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) ) |
52 |
21 49 50
|
divcld |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) e. CC ) |
53 |
38 52
|
mulcomd |
|- ( ph -> ( ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) x. ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) = ( ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) |
54 |
15
|
recnd |
|- ( ph -> ( ( abs ` C ) ^ J ) e. CC ) |
55 |
47
|
rpcnd |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) e. CC ) |
56 |
17
|
recnd |
|- ( ph -> 2 e. CC ) |
57 |
47
|
rpne0d |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) =/= 0 ) |
58 |
54 55 56 57 19
|
divcan7d |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( ( abs ` C ) ^ J ) / ( ( 2 x. N ) ^ -u J ) ) ) |
59 |
24
|
recnd |
|- ( ph -> ( 2 x. N ) e. CC ) |
60 |
44
|
rpne0d |
|- ( ph -> ( 2 x. N ) =/= 0 ) |
61 |
59 60 45
|
expnegd |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) = ( 1 / ( ( 2 x. N ) ^ J ) ) ) |
62 |
61
|
oveq2d |
|- ( ph -> ( ( ( abs ` C ) ^ J ) / ( ( 2 x. N ) ^ -u J ) ) = ( ( ( abs ` C ) ^ J ) / ( 1 / ( ( 2 x. N ) ^ J ) ) ) ) |
63 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
64 |
59 7
|
expcld |
|- ( ph -> ( ( 2 x. N ) ^ J ) e. CC ) |
65 |
27 29
|
gtned |
|- ( ph -> 1 =/= 0 ) |
66 |
59 60 45
|
expne0d |
|- ( ph -> ( ( 2 x. N ) ^ J ) =/= 0 ) |
67 |
54 63 64 65 66
|
divdiv2d |
|- ( ph -> ( ( ( abs ` C ) ^ J ) / ( 1 / ( ( 2 x. N ) ^ J ) ) ) = ( ( ( ( abs ` C ) ^ J ) x. ( ( 2 x. N ) ^ J ) ) / 1 ) ) |
68 |
54 64
|
mulcld |
|- ( ph -> ( ( ( abs ` C ) ^ J ) x. ( ( 2 x. N ) ^ J ) ) e. CC ) |
69 |
68
|
div1d |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) x. ( ( 2 x. N ) ^ J ) ) / 1 ) = ( ( ( abs ` C ) ^ J ) x. ( ( 2 x. N ) ^ J ) ) ) |
70 |
54 64
|
mulcomd |
|- ( ph -> ( ( ( abs ` C ) ^ J ) x. ( ( 2 x. N ) ^ J ) ) = ( ( ( 2 x. N ) ^ J ) x. ( ( abs ` C ) ^ J ) ) ) |
71 |
59 60
|
jca |
|- ( ph -> ( ( 2 x. N ) e. CC /\ ( 2 x. N ) =/= 0 ) ) |
72 |
14
|
recnd |
|- ( ph -> ( abs ` C ) e. CC ) |
73 |
6 9 10
|
knoppndvlem13 |
|- ( ph -> C =/= 0 ) |
74 |
13 73
|
absne0d |
|- ( ph -> ( abs ` C ) =/= 0 ) |
75 |
72 74
|
jca |
|- ( ph -> ( ( abs ` C ) e. CC /\ ( abs ` C ) =/= 0 ) ) |
76 |
71 75 45
|
3jca |
|- ( ph -> ( ( ( 2 x. N ) e. CC /\ ( 2 x. N ) =/= 0 ) /\ ( ( abs ` C ) e. CC /\ ( abs ` C ) =/= 0 ) /\ J e. ZZ ) ) |
77 |
|
mulexpz |
|- ( ( ( ( 2 x. N ) e. CC /\ ( 2 x. N ) =/= 0 ) /\ ( ( abs ` C ) e. CC /\ ( abs ` C ) =/= 0 ) /\ J e. ZZ ) -> ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) = ( ( ( 2 x. N ) ^ J ) x. ( ( abs ` C ) ^ J ) ) ) |
78 |
76 77
|
syl |
|- ( ph -> ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) = ( ( ( 2 x. N ) ^ J ) x. ( ( abs ` C ) ^ J ) ) ) |
79 |
78
|
eqcomd |
|- ( ph -> ( ( ( 2 x. N ) ^ J ) x. ( ( abs ` C ) ^ J ) ) = ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) ) |
80 |
69 70 79
|
3eqtrd |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) x. ( ( 2 x. N ) ^ J ) ) / 1 ) = ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) ) |
81 |
62 67 80
|
3eqtrd |
|- ( ph -> ( ( ( abs ` C ) ^ J ) / ( ( 2 x. N ) ^ -u J ) ) = ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) ) |
82 |
58 81
|
eqtrd |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) ) |
83 |
82
|
oveq1d |
|- ( ph -> ( ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) = ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) |
84 |
53 83
|
eqtrd |
|- ( ph -> ( ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) x. ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) = ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) |
85 |
40 51 84
|
3eqtrd |
|- ( ph -> ( ( ( ( ( abs ` C ) ^ J ) / 2 ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) |
86 |
85
|
eqcomd |
|- ( ph -> ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) = ( ( ( ( ( abs ` C ) ^ J ) / 2 ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) |
87 |
20 37
|
remulcld |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) / 2 ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) e. RR ) |
88 |
5
|
a1i |
|- ( ph -> B = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) ) |
89 |
8
|
peano2zd |
|- ( ph -> ( M + 1 ) e. ZZ ) |
90 |
9 45 89
|
knoppndvlem1 |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) e. RR ) |
91 |
88 90
|
eqeltrd |
|- ( ph -> B e. RR ) |
92 |
11
|
simprd |
|- ( ph -> ( abs ` C ) < 1 ) |
93 |
1 2 3 91 9 12 92
|
knoppcld |
|- ( ph -> ( W ` B ) e. CC ) |
94 |
4
|
a1i |
|- ( ph -> A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) |
95 |
9 45 8
|
knoppndvlem1 |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) e. RR ) |
96 |
94 95
|
eqeltrd |
|- ( ph -> A e. RR ) |
97 |
1 2 3 96 9 12 92
|
knoppcld |
|- ( ph -> ( W ` A ) e. CC ) |
98 |
93 97
|
subcld |
|- ( ph -> ( ( W ` B ) - ( W ` A ) ) e. CC ) |
99 |
98
|
abscld |
|- ( ph -> ( abs ` ( ( W ` B ) - ( W ` A ) ) ) e. RR ) |
100 |
1 2 3 4 5 6 7 8 9 10
|
knoppndvlem15 |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) / 2 ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) <_ ( abs ` ( ( W ` B ) - ( W ` A ) ) ) ) |
101 |
87 99 48 100
|
lediv1dd |
|- ( ph -> ( ( ( ( ( abs ` C ) ^ J ) / 2 ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) <_ ( ( abs ` ( ( W ` B ) - ( W ` A ) ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) |
102 |
86 101
|
eqbrtrd |
|- ( ph -> ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) <_ ( ( abs ` ( ( W ` B ) - ( W ` A ) ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) |
103 |
4 5 7 8 9
|
knoppndvlem16 |
|- ( ph -> ( B - A ) = ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) |
104 |
103
|
eqcomd |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) = ( B - A ) ) |
105 |
104
|
oveq2d |
|- ( ph -> ( ( abs ` ( ( W ` B ) - ( W ` A ) ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( abs ` ( ( W ` B ) - ( W ` A ) ) ) / ( B - A ) ) ) |
106 |
102 105
|
breqtrd |
|- ( ph -> ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) <_ ( ( abs ` ( ( W ` B ) - ( W ` A ) ) ) / ( B - A ) ) ) |