| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndvlem17.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppndvlem17.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 3 |
|
knoppndvlem17.w |
|- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) |
| 4 |
|
knoppndvlem17.a |
|- A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) |
| 5 |
|
knoppndvlem17.b |
|- B = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) |
| 6 |
|
knoppndvlem17.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
| 7 |
|
knoppndvlem17.j |
|- ( ph -> J e. NN0 ) |
| 8 |
|
knoppndvlem17.m |
|- ( ph -> M e. ZZ ) |
| 9 |
|
knoppndvlem17.n |
|- ( ph -> N e. NN ) |
| 10 |
|
knoppndvlem17.1 |
|- ( ph -> 1 < ( N x. ( abs ` C ) ) ) |
| 11 |
6
|
knoppndvlem3 |
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
| 12 |
11
|
simpld |
|- ( ph -> C e. RR ) |
| 13 |
12
|
recnd |
|- ( ph -> C e. CC ) |
| 14 |
13
|
abscld |
|- ( ph -> ( abs ` C ) e. RR ) |
| 15 |
14 7
|
reexpcld |
|- ( ph -> ( ( abs ` C ) ^ J ) e. RR ) |
| 16 |
|
2re |
|- 2 e. RR |
| 17 |
16
|
a1i |
|- ( ph -> 2 e. RR ) |
| 18 |
|
2ne0 |
|- 2 =/= 0 |
| 19 |
18
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 20 |
15 17 19
|
redivcld |
|- ( ph -> ( ( ( abs ` C ) ^ J ) / 2 ) e. RR ) |
| 21 |
20
|
recnd |
|- ( ph -> ( ( ( abs ` C ) ^ J ) / 2 ) e. CC ) |
| 22 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 23 |
9
|
nnred |
|- ( ph -> N e. RR ) |
| 24 |
17 23
|
remulcld |
|- ( ph -> ( 2 x. N ) e. RR ) |
| 25 |
24 14
|
remulcld |
|- ( ph -> ( ( 2 x. N ) x. ( abs ` C ) ) e. RR ) |
| 26 |
25 22
|
resubcld |
|- ( ph -> ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) e. RR ) |
| 27 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 28 |
|
0lt1 |
|- 0 < 1 |
| 29 |
28
|
a1i |
|- ( ph -> 0 < 1 ) |
| 30 |
6 9 10
|
knoppndvlem12 |
|- ( ph -> ( ( ( 2 x. N ) x. ( abs ` C ) ) =/= 1 /\ 1 < ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) |
| 31 |
30
|
simprd |
|- ( ph -> 1 < ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) |
| 32 |
27 22 26 29 31
|
lttrd |
|- ( ph -> 0 < ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) |
| 33 |
26 32
|
jca |
|- ( ph -> ( ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) e. RR /\ 0 < ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) |
| 34 |
|
gt0ne0 |
|- ( ( ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) e. RR /\ 0 < ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) -> ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) =/= 0 ) |
| 35 |
33 34
|
syl |
|- ( ph -> ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) =/= 0 ) |
| 36 |
22 26 35
|
redivcld |
|- ( ph -> ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) e. RR ) |
| 37 |
22 36
|
resubcld |
|- ( ph -> ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) e. RR ) |
| 38 |
37
|
recnd |
|- ( ph -> ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) e. CC ) |
| 39 |
21 38
|
mulcomd |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) / 2 ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) = ( ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) x. ( ( ( abs ` C ) ^ J ) / 2 ) ) ) |
| 40 |
39
|
oveq1d |
|- ( ph -> ( ( ( ( ( abs ` C ) ^ J ) / 2 ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) x. ( ( ( abs ` C ) ^ J ) / 2 ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) |
| 41 |
|
2rp |
|- 2 e. RR+ |
| 42 |
41
|
a1i |
|- ( ph -> 2 e. RR+ ) |
| 43 |
9
|
nnrpd |
|- ( ph -> N e. RR+ ) |
| 44 |
42 43
|
rpmulcld |
|- ( ph -> ( 2 x. N ) e. RR+ ) |
| 45 |
7
|
nn0zd |
|- ( ph -> J e. ZZ ) |
| 46 |
45
|
znegcld |
|- ( ph -> -u J e. ZZ ) |
| 47 |
44 46
|
rpexpcld |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) e. RR+ ) |
| 48 |
47
|
rphalfcld |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. RR+ ) |
| 49 |
48
|
rpcnd |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. CC ) |
| 50 |
48
|
rpne0d |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) =/= 0 ) |
| 51 |
38 21 49 50
|
divassd |
|- ( ph -> ( ( ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) x. ( ( ( abs ` C ) ^ J ) / 2 ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) x. ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) ) |
| 52 |
21 49 50
|
divcld |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) e. CC ) |
| 53 |
38 52
|
mulcomd |
|- ( ph -> ( ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) x. ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) = ( ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) |
| 54 |
15
|
recnd |
|- ( ph -> ( ( abs ` C ) ^ J ) e. CC ) |
| 55 |
47
|
rpcnd |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) e. CC ) |
| 56 |
17
|
recnd |
|- ( ph -> 2 e. CC ) |
| 57 |
47
|
rpne0d |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) =/= 0 ) |
| 58 |
54 55 56 57 19
|
divcan7d |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( ( abs ` C ) ^ J ) / ( ( 2 x. N ) ^ -u J ) ) ) |
| 59 |
24
|
recnd |
|- ( ph -> ( 2 x. N ) e. CC ) |
| 60 |
44
|
rpne0d |
|- ( ph -> ( 2 x. N ) =/= 0 ) |
| 61 |
59 60 45
|
expnegd |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) = ( 1 / ( ( 2 x. N ) ^ J ) ) ) |
| 62 |
61
|
oveq2d |
|- ( ph -> ( ( ( abs ` C ) ^ J ) / ( ( 2 x. N ) ^ -u J ) ) = ( ( ( abs ` C ) ^ J ) / ( 1 / ( ( 2 x. N ) ^ J ) ) ) ) |
| 63 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 64 |
59 7
|
expcld |
|- ( ph -> ( ( 2 x. N ) ^ J ) e. CC ) |
| 65 |
27 29
|
gtned |
|- ( ph -> 1 =/= 0 ) |
| 66 |
59 60 45
|
expne0d |
|- ( ph -> ( ( 2 x. N ) ^ J ) =/= 0 ) |
| 67 |
54 63 64 65 66
|
divdiv2d |
|- ( ph -> ( ( ( abs ` C ) ^ J ) / ( 1 / ( ( 2 x. N ) ^ J ) ) ) = ( ( ( ( abs ` C ) ^ J ) x. ( ( 2 x. N ) ^ J ) ) / 1 ) ) |
| 68 |
54 64
|
mulcld |
|- ( ph -> ( ( ( abs ` C ) ^ J ) x. ( ( 2 x. N ) ^ J ) ) e. CC ) |
| 69 |
68
|
div1d |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) x. ( ( 2 x. N ) ^ J ) ) / 1 ) = ( ( ( abs ` C ) ^ J ) x. ( ( 2 x. N ) ^ J ) ) ) |
| 70 |
54 64
|
mulcomd |
|- ( ph -> ( ( ( abs ` C ) ^ J ) x. ( ( 2 x. N ) ^ J ) ) = ( ( ( 2 x. N ) ^ J ) x. ( ( abs ` C ) ^ J ) ) ) |
| 71 |
59 60
|
jca |
|- ( ph -> ( ( 2 x. N ) e. CC /\ ( 2 x. N ) =/= 0 ) ) |
| 72 |
14
|
recnd |
|- ( ph -> ( abs ` C ) e. CC ) |
| 73 |
6 9 10
|
knoppndvlem13 |
|- ( ph -> C =/= 0 ) |
| 74 |
13 73
|
absne0d |
|- ( ph -> ( abs ` C ) =/= 0 ) |
| 75 |
72 74
|
jca |
|- ( ph -> ( ( abs ` C ) e. CC /\ ( abs ` C ) =/= 0 ) ) |
| 76 |
71 75 45
|
3jca |
|- ( ph -> ( ( ( 2 x. N ) e. CC /\ ( 2 x. N ) =/= 0 ) /\ ( ( abs ` C ) e. CC /\ ( abs ` C ) =/= 0 ) /\ J e. ZZ ) ) |
| 77 |
|
mulexpz |
|- ( ( ( ( 2 x. N ) e. CC /\ ( 2 x. N ) =/= 0 ) /\ ( ( abs ` C ) e. CC /\ ( abs ` C ) =/= 0 ) /\ J e. ZZ ) -> ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) = ( ( ( 2 x. N ) ^ J ) x. ( ( abs ` C ) ^ J ) ) ) |
| 78 |
76 77
|
syl |
|- ( ph -> ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) = ( ( ( 2 x. N ) ^ J ) x. ( ( abs ` C ) ^ J ) ) ) |
| 79 |
78
|
eqcomd |
|- ( ph -> ( ( ( 2 x. N ) ^ J ) x. ( ( abs ` C ) ^ J ) ) = ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) ) |
| 80 |
69 70 79
|
3eqtrd |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) x. ( ( 2 x. N ) ^ J ) ) / 1 ) = ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) ) |
| 81 |
62 67 80
|
3eqtrd |
|- ( ph -> ( ( ( abs ` C ) ^ J ) / ( ( 2 x. N ) ^ -u J ) ) = ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) ) |
| 82 |
58 81
|
eqtrd |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) ) |
| 83 |
82
|
oveq1d |
|- ( ph -> ( ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) = ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) |
| 84 |
53 83
|
eqtrd |
|- ( ph -> ( ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) x. ( ( ( ( abs ` C ) ^ J ) / 2 ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) = ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) |
| 85 |
40 51 84
|
3eqtrd |
|- ( ph -> ( ( ( ( ( abs ` C ) ^ J ) / 2 ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) |
| 86 |
85
|
eqcomd |
|- ( ph -> ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) = ( ( ( ( ( abs ` C ) ^ J ) / 2 ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) |
| 87 |
20 37
|
remulcld |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) / 2 ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) e. RR ) |
| 88 |
5
|
a1i |
|- ( ph -> B = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) ) |
| 89 |
8
|
peano2zd |
|- ( ph -> ( M + 1 ) e. ZZ ) |
| 90 |
9 45 89
|
knoppndvlem1 |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) e. RR ) |
| 91 |
88 90
|
eqeltrd |
|- ( ph -> B e. RR ) |
| 92 |
11
|
simprd |
|- ( ph -> ( abs ` C ) < 1 ) |
| 93 |
1 2 3 91 9 12 92
|
knoppcld |
|- ( ph -> ( W ` B ) e. CC ) |
| 94 |
4
|
a1i |
|- ( ph -> A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) |
| 95 |
9 45 8
|
knoppndvlem1 |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) e. RR ) |
| 96 |
94 95
|
eqeltrd |
|- ( ph -> A e. RR ) |
| 97 |
1 2 3 96 9 12 92
|
knoppcld |
|- ( ph -> ( W ` A ) e. CC ) |
| 98 |
93 97
|
subcld |
|- ( ph -> ( ( W ` B ) - ( W ` A ) ) e. CC ) |
| 99 |
98
|
abscld |
|- ( ph -> ( abs ` ( ( W ` B ) - ( W ` A ) ) ) e. RR ) |
| 100 |
1 2 3 4 5 6 7 8 9 10
|
knoppndvlem15 |
|- ( ph -> ( ( ( ( abs ` C ) ^ J ) / 2 ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) <_ ( abs ` ( ( W ` B ) - ( W ` A ) ) ) ) |
| 101 |
87 99 48 100
|
lediv1dd |
|- ( ph -> ( ( ( ( ( abs ` C ) ^ J ) / 2 ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) <_ ( ( abs ` ( ( W ` B ) - ( W ` A ) ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) |
| 102 |
86 101
|
eqbrtrd |
|- ( ph -> ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) <_ ( ( abs ` ( ( W ` B ) - ( W ` A ) ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) |
| 103 |
4 5 7 8 9
|
knoppndvlem16 |
|- ( ph -> ( B - A ) = ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) |
| 104 |
103
|
eqcomd |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) = ( B - A ) ) |
| 105 |
104
|
oveq2d |
|- ( ph -> ( ( abs ` ( ( W ` B ) - ( W ` A ) ) ) / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) = ( ( abs ` ( ( W ` B ) - ( W ` A ) ) ) / ( B - A ) ) ) |
| 106 |
102 105
|
breqtrd |
|- ( ph -> ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) <_ ( ( abs ` ( ( W ` B ) - ( W ` A ) ) ) / ( B - A ) ) ) |