| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndvlem22.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppndvlem22.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 3 |
|
knoppndvlem22.w |
|- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) |
| 4 |
|
knoppndvlem22.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
| 5 |
|
knoppndvlem22.d |
|- ( ph -> D e. RR+ ) |
| 6 |
|
knoppndvlem22.e |
|- ( ph -> E e. RR+ ) |
| 7 |
|
knoppndvlem22.h |
|- ( ph -> H e. RR ) |
| 8 |
|
knoppndvlem22.n |
|- ( ph -> N e. NN ) |
| 9 |
|
knoppndvlem22.1 |
|- ( ph -> 1 < ( N x. ( abs ` C ) ) ) |
| 10 |
4 8 9
|
knoppndvlem20 |
|- ( ph -> ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) e. RR+ ) |
| 11 |
4 8 5 6 10 9
|
knoppndvlem18 |
|- ( ph -> E. j e. NN0 ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) ) |
| 12 |
|
eqid |
|- ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) = ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ ( j e. NN0 /\ ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) ) ) -> C e. ( -u 1 (,) 1 ) ) |
| 14 |
5
|
adantr |
|- ( ( ph /\ ( j e. NN0 /\ ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) ) ) -> D e. RR+ ) |
| 15 |
6
|
adantr |
|- ( ( ph /\ ( j e. NN0 /\ ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) ) ) -> E e. RR+ ) |
| 16 |
7
|
adantr |
|- ( ( ph /\ ( j e. NN0 /\ ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) ) ) -> H e. RR ) |
| 17 |
|
simprl |
|- ( ( ph /\ ( j e. NN0 /\ ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) ) ) -> j e. NN0 ) |
| 18 |
8
|
adantr |
|- ( ( ph /\ ( j e. NN0 /\ ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) ) ) -> N e. NN ) |
| 19 |
9
|
adantr |
|- ( ( ph /\ ( j e. NN0 /\ ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) ) ) -> 1 < ( N x. ( abs ` C ) ) ) |
| 20 |
|
simprrl |
|- ( ( ph /\ ( j e. NN0 /\ ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) ) ) -> ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D ) |
| 21 |
|
simprrr |
|- ( ( ph /\ ( j e. NN0 /\ ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) ) ) -> E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) |
| 22 |
1 2 3 12 13 14 15 16 17 18 19 20 21
|
knoppndvlem21 |
|- ( ( ph /\ ( j e. NN0 /\ ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) ) ) -> E. a e. RR E. b e. RR ( ( a <_ H /\ H <_ b ) /\ ( ( b - a ) < D /\ a =/= b ) /\ E <_ ( ( abs ` ( ( W ` b ) - ( W ` a ) ) ) / ( b - a ) ) ) ) |
| 23 |
11 22
|
rexlimddv |
|- ( ph -> E. a e. RR E. b e. RR ( ( a <_ H /\ H <_ b ) /\ ( ( b - a ) < D /\ a =/= b ) /\ E <_ ( ( abs ` ( ( W ` b ) - ( W ` a ) ) ) / ( b - a ) ) ) ) |