Metamath Proof Explorer


Theorem knoppndvlem20

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 18-Aug-2021)

Ref Expression
Hypotheses knoppndvlem20.c φC11
knoppndvlem20.n φN
knoppndvlem20.1 φ1<NC
Assertion knoppndvlem20 φ112 NC1+

Proof

Step Hyp Ref Expression
1 knoppndvlem20.c φC11
2 knoppndvlem20.n φN
3 knoppndvlem20.1 φ1<NC
4 1 2 3 knoppndvlem12 φ2 NC11<2 NC1
5 4 simprd φ1<2 NC1
6 2re 2
7 6 a1i φ2
8 2 nnred φN
9 7 8 remulcld φ2 N
10 1 knoppndvlem3 φCC<1
11 10 simpld φC
12 11 recnd φC
13 12 abscld φC
14 9 13 remulcld φ2 NC
15 1red φ1
16 14 15 resubcld φ2 NC1
17 0red φ0
18 0lt1 0<1
19 18 a1i φ0<1
20 17 15 16 19 5 lttrd φ0<2 NC1
21 16 20 elrpd φ2 NC1+
22 21 recgt1d φ1<2 NC112 NC1<1
23 5 22 mpbid φ12 NC1<1
24 21 rprecred φ12 NC1
25 24 15 jca φ12 NC11
26 difrp 12 NC1112 NC1<1112 NC1+
27 25 26 syl φ12 NC1<1112 NC1+
28 23 27 mpbid φ112 NC1+