Step |
Hyp |
Ref |
Expression |
1 |
|
unbdqndv2.x |
|
2 |
|
unbdqndv2.f |
|
3 |
|
unbdqndv2.1 |
|
4 |
|
eqid |
|
5 |
|
ax-resscn |
|
6 |
5
|
a1i |
|
7 |
1
|
adantr |
|
8 |
2
|
adantr |
|
9 |
|
breq1 |
|
10 |
9
|
3anbi3d |
|
11 |
10
|
rexbidv |
|
12 |
11
|
rexbidv |
|
13 |
12
|
ralbidv |
|
14 |
3
|
ad2antrr |
|
15 |
|
2rp |
|
16 |
15
|
a1i |
|
17 |
|
simprl |
|
18 |
16 17
|
rpmulcld |
|
19 |
13 14 18
|
rspcdva |
|
20 |
|
simprr |
|
21 |
|
rsp |
|
22 |
19 20 21
|
sylc |
|
23 |
|
eqid |
|
24 |
7
|
ad3antrrr |
|
25 |
8
|
ad3antrrr |
|
26 |
6 8 7
|
dvbss |
|
27 |
|
simpr |
|
28 |
26 27
|
sseldd |
|
29 |
28
|
adantr |
|
30 |
29
|
adantr |
|
31 |
30
|
adantr |
|
32 |
17
|
ad2antrr |
|
33 |
20
|
ad2antrr |
|
34 |
|
simplrl |
|
35 |
|
simplrr |
|
36 |
|
simpr2r |
|
37 |
|
simpr1l |
|
38 |
|
simpr1r |
|
39 |
|
simpr2l |
|
40 |
|
simpr3 |
|
41 |
4 23 24 25 31 32 33 34 35 36 37 38 39 40
|
unbdqndv2lem2 |
|
42 |
41
|
simpld |
|
43 |
|
fvoveq1 |
|
44 |
43
|
breq1d |
|
45 |
|
2fveq3 |
|
46 |
45
|
breq2d |
|
47 |
44 46
|
anbi12d |
|
48 |
47
|
adantl |
|
49 |
41
|
simprd |
|
50 |
42 48 49
|
rspcedvd |
|
51 |
50
|
ex |
|
52 |
51
|
rexlimdvva |
|
53 |
22 52
|
mpd |
|
54 |
53
|
ralrimivva |
|
55 |
4 6 7 8 54
|
unbdqndv1 |
|
56 |
55
|
pm2.01da |
|