Description: Variant of unbdqndv1 with the hypothesis that ( ( ( Fy ) - ( Fx ) ) / ( y - x ) ) is unbounded where x <_ A and A <_ y . (Contributed by Asger C. Ipsen, 12-May-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unbdqndv2.x | |
|
unbdqndv2.f | |
||
unbdqndv2.1 | |
||
Assertion | unbdqndv2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unbdqndv2.x | |
|
2 | unbdqndv2.f | |
|
3 | unbdqndv2.1 | |
|
4 | eqid | |
|
5 | ax-resscn | |
|
6 | 5 | a1i | |
7 | 1 | adantr | |
8 | 2 | adantr | |
9 | breq1 | |
|
10 | 9 | 3anbi3d | |
11 | 10 | rexbidv | |
12 | 11 | rexbidv | |
13 | 12 | ralbidv | |
14 | 3 | ad2antrr | |
15 | 2rp | |
|
16 | 15 | a1i | |
17 | simprl | |
|
18 | 16 17 | rpmulcld | |
19 | 13 14 18 | rspcdva | |
20 | simprr | |
|
21 | rsp | |
|
22 | 19 20 21 | sylc | |
23 | eqid | |
|
24 | 7 | ad3antrrr | |
25 | 8 | ad3antrrr | |
26 | 6 8 7 | dvbss | |
27 | simpr | |
|
28 | 26 27 | sseldd | |
29 | 28 | adantr | |
30 | 29 | adantr | |
31 | 30 | adantr | |
32 | 17 | ad2antrr | |
33 | 20 | ad2antrr | |
34 | simplrl | |
|
35 | simplrr | |
|
36 | simpr2r | |
|
37 | simpr1l | |
|
38 | simpr1r | |
|
39 | simpr2l | |
|
40 | simpr3 | |
|
41 | 4 23 24 25 31 32 33 34 35 36 37 38 39 40 | unbdqndv2lem2 | |
42 | 41 | simpld | |
43 | fvoveq1 | |
|
44 | 43 | breq1d | |
45 | 2fveq3 | |
|
46 | 45 | breq2d | |
47 | 44 46 | anbi12d | |
48 | 47 | adantl | |
49 | 41 | simprd | |
50 | 42 48 49 | rspcedvd | |
51 | 50 | ex | |
52 | 51 | rexlimdvva | |
53 | 22 52 | mpd | |
54 | 53 | ralrimivva | |
55 | 4 6 7 8 54 | unbdqndv1 | |
56 | 55 | pm2.01da | |