Metamath Proof Explorer


Theorem unbdqndv2

Description: Variant of unbdqndv1 with the hypothesis that ( ( ( Fy ) - ( Fx ) ) / ( y - x ) ) is unbounded where x <_ A and A <_ y . (Contributed by Asger C. Ipsen, 12-May-2021)

Ref Expression
Hypotheses unbdqndv2.x φX
unbdqndv2.f φF:X
unbdqndv2.1 φb+d+xXyXxAAyyx<dxybFyFxyx
Assertion unbdqndv2 φ¬AdomF

Proof

Step Hyp Ref Expression
1 unbdqndv2.x φX
2 unbdqndv2.f φF:X
3 unbdqndv2.1 φb+d+xXyXxAAyyx<dxybFyFxyx
4 eqid zXAFzFAzA=zXAFzFAzA
5 ax-resscn
6 5 a1i φAdomF
7 1 adantr φAdomFX
8 2 adantr φAdomFF:X
9 breq1 b=2cbFyFxyx2cFyFxyx
10 9 3anbi3d b=2cxAAyyx<dxybFyFxyxxAAyyx<dxy2cFyFxyx
11 10 rexbidv b=2cyXxAAyyx<dxybFyFxyxyXxAAyyx<dxy2cFyFxyx
12 11 rexbidv b=2cxXyXxAAyyx<dxybFyFxyxxXyXxAAyyx<dxy2cFyFxyx
13 12 ralbidv b=2cd+xXyXxAAyyx<dxybFyFxyxd+xXyXxAAyyx<dxy2cFyFxyx
14 3 ad2antrr φAdomFc+d+b+d+xXyXxAAyyx<dxybFyFxyx
15 2rp 2+
16 15 a1i φAdomFc+d+2+
17 simprl φAdomFc+d+c+
18 16 17 rpmulcld φAdomFc+d+2c+
19 13 14 18 rspcdva φAdomFc+d+d+xXyXxAAyyx<dxy2cFyFxyx
20 simprr φAdomFc+d+d+
21 rsp d+xXyXxAAyyx<dxy2cFyFxyxd+xXyXxAAyyx<dxy2cFyFxyx
22 19 20 21 sylc φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyx
23 eqid ifcyxFxFAxy=ifcyxFxFAxy
24 7 ad3antrrr φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxX
25 8 ad3antrrr φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxF:X
26 6 8 7 dvbss φAdomFdomFX
27 simpr φAdomFAdomF
28 26 27 sseldd φAdomFAX
29 28 adantr φAdomFc+d+AX
30 29 adantr φAdomFc+d+xXyXAX
31 30 adantr φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxAX
32 17 ad2antrr φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxc+
33 20 ad2antrr φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxd+
34 simplrl φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxxX
35 simplrr φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxyX
36 simpr2r φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxxy
37 simpr1l φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxxA
38 simpr1r φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxAy
39 simpr2l φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxyx<d
40 simpr3 φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyx2cFyFxyx
41 4 23 24 25 31 32 33 34 35 36 37 38 39 40 unbdqndv2lem2 φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxifcyxFxFAxyXAifcyxFxFAxyA<dczXAFzFAzAifcyxFxFAxy
42 41 simpld φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxifcyxFxFAxyXA
43 fvoveq1 w=ifcyxFxFAxywA=ifcyxFxFAxyA
44 43 breq1d w=ifcyxFxFAxywA<difcyxFxFAxyA<d
45 2fveq3 w=ifcyxFxFAxyzXAFzFAzAw=zXAFzFAzAifcyxFxFAxy
46 45 breq2d w=ifcyxFxFAxyczXAFzFAzAwczXAFzFAzAifcyxFxFAxy
47 44 46 anbi12d w=ifcyxFxFAxywA<dczXAFzFAzAwifcyxFxFAxyA<dczXAFzFAzAifcyxFxFAxy
48 47 adantl φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxw=ifcyxFxFAxywA<dczXAFzFAzAwifcyxFxFAxyA<dczXAFzFAzAifcyxFxFAxy
49 41 simprd φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxifcyxFxFAxyA<dczXAFzFAzAifcyxFxFAxy
50 42 48 49 rspcedvd φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxwXAwA<dczXAFzFAzAw
51 50 ex φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxwXAwA<dczXAFzFAzAw
52 51 rexlimdvva φAdomFc+d+xXyXxAAyyx<dxy2cFyFxyxwXAwA<dczXAFzFAzAw
53 22 52 mpd φAdomFc+d+wXAwA<dczXAFzFAzAw
54 53 ralrimivva φAdomFc+d+wXAwA<dczXAFzFAzAw
55 4 6 7 8 54 unbdqndv1 φAdomF¬AdomF
56 55 pm2.01da φ¬AdomF