| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unbdqndv2.x |
|
| 2 |
|
unbdqndv2.f |
|
| 3 |
|
unbdqndv2.1 |
|
| 4 |
|
eqid |
|
| 5 |
|
ax-resscn |
|
| 6 |
5
|
a1i |
|
| 7 |
1
|
adantr |
|
| 8 |
2
|
adantr |
|
| 9 |
|
breq1 |
|
| 10 |
9
|
3anbi3d |
|
| 11 |
10
|
rexbidv |
|
| 12 |
11
|
rexbidv |
|
| 13 |
12
|
ralbidv |
|
| 14 |
3
|
ad2antrr |
|
| 15 |
|
2rp |
|
| 16 |
15
|
a1i |
|
| 17 |
|
simprl |
|
| 18 |
16 17
|
rpmulcld |
|
| 19 |
13 14 18
|
rspcdva |
|
| 20 |
|
simprr |
|
| 21 |
|
rsp |
|
| 22 |
19 20 21
|
sylc |
|
| 23 |
|
eqid |
|
| 24 |
7
|
ad3antrrr |
|
| 25 |
8
|
ad3antrrr |
|
| 26 |
6 8 7
|
dvbss |
|
| 27 |
|
simpr |
|
| 28 |
26 27
|
sseldd |
|
| 29 |
28
|
adantr |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
adantr |
|
| 32 |
17
|
ad2antrr |
|
| 33 |
20
|
ad2antrr |
|
| 34 |
|
simplrl |
|
| 35 |
|
simplrr |
|
| 36 |
|
simpr2r |
|
| 37 |
|
simpr1l |
|
| 38 |
|
simpr1r |
|
| 39 |
|
simpr2l |
|
| 40 |
|
simpr3 |
|
| 41 |
4 23 24 25 31 32 33 34 35 36 37 38 39 40
|
unbdqndv2lem2 |
|
| 42 |
41
|
simpld |
|
| 43 |
|
fvoveq1 |
|
| 44 |
43
|
breq1d |
|
| 45 |
|
2fveq3 |
|
| 46 |
45
|
breq2d |
|
| 47 |
44 46
|
anbi12d |
|
| 48 |
47
|
adantl |
|
| 49 |
41
|
simprd |
|
| 50 |
42 48 49
|
rspcedvd |
|
| 51 |
50
|
ex |
|
| 52 |
51
|
rexlimdvva |
|
| 53 |
22 52
|
mpd |
|
| 54 |
53
|
ralrimivva |
|
| 55 |
4 6 7 8 54
|
unbdqndv1 |
|
| 56 |
55
|
pm2.01da |
|