Step |
Hyp |
Ref |
Expression |
1 |
|
unbdqndv2lem2.g |
|
2 |
|
unbdqndv2lem2.w |
|
3 |
|
unbdqndv2lem2.x |
|
4 |
|
unbdqndv2lem2.f |
|
5 |
|
unbdqndv2lem2.a |
|
6 |
|
unbdqndv2lem2.b |
|
7 |
|
unbdqndv2lem2.d |
|
8 |
|
unbdqndv2lem2.u |
|
9 |
|
unbdqndv2lem2.v |
|
10 |
|
unbdqndv2lem2.1 |
|
11 |
|
unbdqndv2lem2.2 |
|
12 |
|
unbdqndv2lem2.3 |
|
13 |
|
unbdqndv2lem2.4 |
|
14 |
|
unbdqndv2lem2.5 |
|
15 |
2
|
a1i |
|
16 |
|
iftrue |
|
17 |
16
|
adantl |
|
18 |
15 17
|
eqtrd |
|
19 |
8
|
adantr |
|
20 |
|
simplr |
|
21 |
|
fveq2 |
|
22 |
21
|
eqcomd |
|
23 |
22
|
oveq2d |
|
24 |
23
|
fveq2d |
|
25 |
24
|
adantl |
|
26 |
4 8
|
ffvelrnd |
|
27 |
26
|
subidd |
|
28 |
27
|
fveq2d |
|
29 |
28
|
adantr |
|
30 |
|
abs0 |
|
31 |
30
|
a1i |
|
32 |
29 31
|
eqtrd |
|
33 |
25 32
|
eqtrd |
|
34 |
33
|
adantlr |
|
35 |
20 34
|
breqtrd |
|
36 |
6
|
rpred |
|
37 |
3 9
|
sseldd |
|
38 |
3 8
|
sseldd |
|
39 |
37 38
|
resubcld |
|
40 |
6
|
rpgt0d |
|
41 |
3 5
|
sseldd |
|
42 |
38 41 37 11 12
|
letrd |
|
43 |
10
|
necomd |
|
44 |
38 37 42 43
|
leneltd |
|
45 |
38 37
|
posdifd |
|
46 |
44 45
|
mpbid |
|
47 |
36 39 40 46
|
mulgt0d |
|
48 |
|
0red |
|
49 |
36 39
|
remulcld |
|
50 |
48 49
|
ltnled |
|
51 |
47 50
|
mpbid |
|
52 |
51
|
adantr |
|
53 |
52
|
adantr |
|
54 |
35 53
|
pm2.65da |
|
55 |
54
|
neqned |
|
56 |
19 55
|
jca |
|
57 |
|
eldifsn |
|
58 |
56 57
|
sylibr |
|
59 |
18 58
|
eqeltrd |
|
60 |
18
|
oveq1d |
|
61 |
60
|
fveq2d |
|
62 |
38 41 11
|
abssuble0d |
|
63 |
62
|
adantr |
|
64 |
61 63
|
eqtrd |
|
65 |
41 38
|
resubcld |
|
66 |
7
|
rpred |
|
67 |
41 37 38 12
|
lesub1dd |
|
68 |
65 39 66 67 13
|
lelttrd |
|
69 |
68
|
adantr |
|
70 |
64 69
|
eqbrtrd |
|
71 |
36 65
|
remulcld |
|
72 |
71
|
adantr |
|
73 |
49
|
adantr |
|
74 |
4 5
|
ffvelrnd |
|
75 |
26 74
|
subcld |
|
76 |
75
|
abscld |
|
77 |
76
|
adantr |
|
78 |
48 36 40
|
ltled |
|
79 |
65 39 36 78 67
|
lemul2ad |
|
80 |
79
|
adantr |
|
81 |
|
simpr |
|
82 |
72 73 77 80 81
|
letrd |
|
83 |
36
|
adantr |
|
84 |
65
|
adantr |
|
85 |
11
|
adantr |
|
86 |
55
|
necomd |
|
87 |
85 86
|
jca |
|
88 |
38 41
|
ltlend |
|
89 |
88
|
adantr |
|
90 |
87 89
|
mpbird |
|
91 |
38 41
|
posdifd |
|
92 |
91
|
adantr |
|
93 |
90 92
|
mpbid |
|
94 |
84 93
|
jca |
|
95 |
|
elrp |
|
96 |
94 95
|
sylibr |
|
97 |
83 77 96
|
lemuldivd |
|
98 |
82 97
|
mpbid |
|
99 |
18
|
fveq2d |
|
100 |
|
fveq2 |
|
101 |
100
|
oveq1d |
|
102 |
|
oveq1 |
|
103 |
101 102
|
oveq12d |
|
104 |
|
ovexd |
|
105 |
1 103 58 104
|
fvmptd3 |
|
106 |
99 105
|
eqtrd |
|
107 |
106
|
fveq2d |
|
108 |
75
|
adantr |
|
109 |
38
|
recnd |
|
110 |
41
|
recnd |
|
111 |
109 110
|
subcld |
|
112 |
111
|
adantr |
|
113 |
109
|
adantr |
|
114 |
110
|
adantr |
|
115 |
113 114 55
|
subne0d |
|
116 |
108 112 115
|
absdivd |
|
117 |
63
|
oveq2d |
|
118 |
116 117
|
eqtrd |
|
119 |
107 118
|
eqtrd |
|
120 |
119
|
eqcomd |
|
121 |
98 120
|
breqtrd |
|
122 |
70 121
|
jca |
|
123 |
59 122
|
jca |
|
124 |
2
|
a1i |
|
125 |
|
simpr |
|
126 |
125
|
iffalsed |
|
127 |
124 126
|
eqtrd |
|
128 |
9
|
adantr |
|
129 |
38 37 42
|
abssubge0d |
|
130 |
129
|
oveq2d |
|
131 |
130
|
breq1d |
|
132 |
131
|
adantr |
|
133 |
125 132
|
mtbird |
|
134 |
4 9
|
ffvelrnd |
|
135 |
39
|
recnd |
|
136 |
48 46
|
gtned |
|
137 |
134 26
|
subcld |
|
138 |
137 135 136
|
absdivd |
|
139 |
129
|
oveq2d |
|
140 |
138 139
|
eqtrd |
|
141 |
140
|
eqcomd |
|
142 |
14 141
|
breqtrd |
|
143 |
134 26 74 135 6 136 142
|
unbdqndv2lem1 |
|
144 |
143
|
adantr |
|
145 |
|
orel2 |
|
146 |
133 144 145
|
sylc |
|
147 |
146
|
adantr |
|
148 |
|
fveq2 |
|
149 |
148
|
oveq1d |
|
150 |
149
|
adantl |
|
151 |
74
|
subidd |
|
152 |
151
|
adantr |
|
153 |
150 152
|
eqtrd |
|
154 |
153
|
fveq2d |
|
155 |
30
|
a1i |
|
156 |
154 155
|
eqtrd |
|
157 |
156
|
adantlr |
|
158 |
147 157
|
breqtrd |
|
159 |
130
|
breq1d |
|
160 |
51 159
|
mtbird |
|
161 |
160
|
adantr |
|
162 |
161
|
adantr |
|
163 |
158 162
|
pm2.65da |
|
164 |
163
|
neqned |
|
165 |
128 164
|
jca |
|
166 |
|
eldifsn |
|
167 |
165 166
|
sylibr |
|
168 |
127 167
|
eqeltrd |
|
169 |
127
|
oveq1d |
|
170 |
169
|
fveq2d |
|
171 |
41 37 12
|
abssubge0d |
|
172 |
171
|
adantr |
|
173 |
170 172
|
eqtrd |
|
174 |
37 41
|
resubcld |
|
175 |
38 41 37 11
|
lesub2dd |
|
176 |
174 39 66 175 13
|
lelttrd |
|
177 |
176
|
adantr |
|
178 |
173 177
|
eqbrtrd |
|
179 |
171 174
|
eqeltrd |
|
180 |
36 179
|
remulcld |
|
181 |
180
|
adantr |
|
182 |
130 49
|
eqeltrd |
|
183 |
182
|
adantr |
|
184 |
134 74
|
subcld |
|
185 |
184
|
abscld |
|
186 |
185
|
adantr |
|
187 |
129 39
|
eqeltrd |
|
188 |
175 171 129
|
3brtr4d |
|
189 |
179 187 36 78 188
|
lemul2ad |
|
190 |
189
|
adantr |
|
191 |
181 183 186 190 146
|
letrd |
|
192 |
36
|
adantr |
|
193 |
174
|
recnd |
|
194 |
193
|
adantr |
|
195 |
37
|
recnd |
|
196 |
195
|
adantr |
|
197 |
110
|
adantr |
|
198 |
196 197 164
|
subne0d |
|
199 |
194 198
|
absrpcld |
|
200 |
192 186 199
|
lemuldivd |
|
201 |
191 200
|
mpbid |
|
202 |
127
|
fveq2d |
|
203 |
|
fveq2 |
|
204 |
203
|
oveq1d |
|
205 |
|
oveq1 |
|
206 |
204 205
|
oveq12d |
|
207 |
|
ovexd |
|
208 |
1 206 167 207
|
fvmptd3 |
|
209 |
202 208
|
eqtrd |
|
210 |
209
|
fveq2d |
|
211 |
184
|
adantr |
|
212 |
211 194 198
|
absdivd |
|
213 |
210 212
|
eqtrd |
|
214 |
213
|
eqcomd |
|
215 |
201 214
|
breqtrd |
|
216 |
178 215
|
jca |
|
217 |
168 216
|
jca |
|
218 |
123 217
|
pm2.61dan |
|