| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unbdqndv2lem2.g |
⊢ 𝐺 = ( 𝑧 ∈ ( 𝑋 ∖ { 𝐴 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑧 − 𝐴 ) ) ) |
| 2 |
|
unbdqndv2lem2.w |
⊢ 𝑊 = if ( ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) , 𝑈 , 𝑉 ) |
| 3 |
|
unbdqndv2lem2.x |
⊢ ( 𝜑 → 𝑋 ⊆ ℝ ) |
| 4 |
|
unbdqndv2lem2.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
| 5 |
|
unbdqndv2lem2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 6 |
|
unbdqndv2lem2.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 7 |
|
unbdqndv2lem2.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) |
| 8 |
|
unbdqndv2lem2.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑋 ) |
| 9 |
|
unbdqndv2lem2.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝑋 ) |
| 10 |
|
unbdqndv2lem2.1 |
⊢ ( 𝜑 → 𝑈 ≠ 𝑉 ) |
| 11 |
|
unbdqndv2lem2.2 |
⊢ ( 𝜑 → 𝑈 ≤ 𝐴 ) |
| 12 |
|
unbdqndv2lem2.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝑉 ) |
| 13 |
|
unbdqndv2lem2.4 |
⊢ ( 𝜑 → ( 𝑉 − 𝑈 ) < 𝐷 ) |
| 14 |
|
unbdqndv2lem2.5 |
⊢ ( 𝜑 → ( 2 · 𝐵 ) ≤ ( ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝑈 ) ) ) / ( 𝑉 − 𝑈 ) ) ) |
| 15 |
2
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑊 = if ( ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) , 𝑈 , 𝑉 ) ) |
| 16 |
|
iftrue |
⊢ ( ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) → if ( ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) , 𝑈 , 𝑉 ) = 𝑈 ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → if ( ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) , 𝑈 , 𝑉 ) = 𝑈 ) |
| 18 |
15 17
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑊 = 𝑈 ) |
| 19 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑈 ∈ 𝑋 ) |
| 20 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) ∧ 𝑈 = 𝐴 ) → ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑈 = 𝐴 → ( 𝐹 ‘ 𝑈 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 22 |
21
|
eqcomd |
⊢ ( 𝑈 = 𝐴 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝑈 ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑈 = 𝐴 → ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝑈 ) ) ) |
| 24 |
23
|
fveq2d |
⊢ ( 𝑈 = 𝐴 → ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝑈 ) ) ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑈 = 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝑈 ) ) ) ) |
| 26 |
4 8
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑈 ) ∈ ℂ ) |
| 27 |
26
|
subidd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝑈 ) ) = 0 ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝑈 ) ) ) = ( abs ‘ 0 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 = 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝑈 ) ) ) = ( abs ‘ 0 ) ) |
| 30 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
| 31 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑈 = 𝐴 ) → ( abs ‘ 0 ) = 0 ) |
| 32 |
29 31
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑈 = 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝑈 ) ) ) = 0 ) |
| 33 |
25 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑈 = 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) = 0 ) |
| 34 |
33
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) ∧ 𝑈 = 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) = 0 ) |
| 35 |
20 34
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) ∧ 𝑈 = 𝐴 ) → ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ 0 ) |
| 36 |
6
|
rpred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 37 |
3 9
|
sseldd |
⊢ ( 𝜑 → 𝑉 ∈ ℝ ) |
| 38 |
3 8
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
| 39 |
37 38
|
resubcld |
⊢ ( 𝜑 → ( 𝑉 − 𝑈 ) ∈ ℝ ) |
| 40 |
6
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐵 ) |
| 41 |
3 5
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 42 |
38 41 37 11 12
|
letrd |
⊢ ( 𝜑 → 𝑈 ≤ 𝑉 ) |
| 43 |
10
|
necomd |
⊢ ( 𝜑 → 𝑉 ≠ 𝑈 ) |
| 44 |
38 37 42 43
|
leneltd |
⊢ ( 𝜑 → 𝑈 < 𝑉 ) |
| 45 |
38 37
|
posdifd |
⊢ ( 𝜑 → ( 𝑈 < 𝑉 ↔ 0 < ( 𝑉 − 𝑈 ) ) ) |
| 46 |
44 45
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝑉 − 𝑈 ) ) |
| 47 |
36 39 40 46
|
mulgt0d |
⊢ ( 𝜑 → 0 < ( 𝐵 · ( 𝑉 − 𝑈 ) ) ) |
| 48 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 49 |
36 39
|
remulcld |
⊢ ( 𝜑 → ( 𝐵 · ( 𝑉 − 𝑈 ) ) ∈ ℝ ) |
| 50 |
48 49
|
ltnled |
⊢ ( 𝜑 → ( 0 < ( 𝐵 · ( 𝑉 − 𝑈 ) ) ↔ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ 0 ) ) |
| 51 |
47 50
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ 0 ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ 0 ) |
| 53 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) ∧ 𝑈 = 𝐴 ) → ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ 0 ) |
| 54 |
35 53
|
pm2.65da |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ¬ 𝑈 = 𝐴 ) |
| 55 |
54
|
neqned |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑈 ≠ 𝐴 ) |
| 56 |
19 55
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝑈 ∈ 𝑋 ∧ 𝑈 ≠ 𝐴 ) ) |
| 57 |
|
eldifsn |
⊢ ( 𝑈 ∈ ( 𝑋 ∖ { 𝐴 } ) ↔ ( 𝑈 ∈ 𝑋 ∧ 𝑈 ≠ 𝐴 ) ) |
| 58 |
56 57
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑈 ∈ ( 𝑋 ∖ { 𝐴 } ) ) |
| 59 |
18 58
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑊 ∈ ( 𝑋 ∖ { 𝐴 } ) ) |
| 60 |
18
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝑊 − 𝐴 ) = ( 𝑈 − 𝐴 ) ) |
| 61 |
60
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( 𝑊 − 𝐴 ) ) = ( abs ‘ ( 𝑈 − 𝐴 ) ) ) |
| 62 |
38 41 11
|
abssuble0d |
⊢ ( 𝜑 → ( abs ‘ ( 𝑈 − 𝐴 ) ) = ( 𝐴 − 𝑈 ) ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( 𝑈 − 𝐴 ) ) = ( 𝐴 − 𝑈 ) ) |
| 64 |
61 63
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( 𝑊 − 𝐴 ) ) = ( 𝐴 − 𝑈 ) ) |
| 65 |
41 38
|
resubcld |
⊢ ( 𝜑 → ( 𝐴 − 𝑈 ) ∈ ℝ ) |
| 66 |
7
|
rpred |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 67 |
41 37 38 12
|
lesub1dd |
⊢ ( 𝜑 → ( 𝐴 − 𝑈 ) ≤ ( 𝑉 − 𝑈 ) ) |
| 68 |
65 39 66 67 13
|
lelttrd |
⊢ ( 𝜑 → ( 𝐴 − 𝑈 ) < 𝐷 ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐴 − 𝑈 ) < 𝐷 ) |
| 70 |
64 69
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( 𝑊 − 𝐴 ) ) < 𝐷 ) |
| 71 |
36 65
|
remulcld |
⊢ ( 𝜑 → ( 𝐵 · ( 𝐴 − 𝑈 ) ) ∈ ℝ ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐵 · ( 𝐴 − 𝑈 ) ) ∈ ℝ ) |
| 73 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐵 · ( 𝑉 − 𝑈 ) ) ∈ ℝ ) |
| 74 |
4 5
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 75 |
26 74
|
subcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 76 |
75
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 78 |
48 36 40
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
| 79 |
65 39 36 78 67
|
lemul2ad |
⊢ ( 𝜑 → ( 𝐵 · ( 𝐴 − 𝑈 ) ) ≤ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐵 · ( 𝐴 − 𝑈 ) ) ≤ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ) |
| 81 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 82 |
72 73 77 80 81
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐵 · ( 𝐴 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 83 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝐵 ∈ ℝ ) |
| 84 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐴 − 𝑈 ) ∈ ℝ ) |
| 85 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑈 ≤ 𝐴 ) |
| 86 |
55
|
necomd |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝐴 ≠ 𝑈 ) |
| 87 |
85 86
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝑈 ≤ 𝐴 ∧ 𝐴 ≠ 𝑈 ) ) |
| 88 |
38 41
|
ltlend |
⊢ ( 𝜑 → ( 𝑈 < 𝐴 ↔ ( 𝑈 ≤ 𝐴 ∧ 𝐴 ≠ 𝑈 ) ) ) |
| 89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝑈 < 𝐴 ↔ ( 𝑈 ≤ 𝐴 ∧ 𝐴 ≠ 𝑈 ) ) ) |
| 90 |
87 89
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑈 < 𝐴 ) |
| 91 |
38 41
|
posdifd |
⊢ ( 𝜑 → ( 𝑈 < 𝐴 ↔ 0 < ( 𝐴 − 𝑈 ) ) ) |
| 92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝑈 < 𝐴 ↔ 0 < ( 𝐴 − 𝑈 ) ) ) |
| 93 |
90 92
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 0 < ( 𝐴 − 𝑈 ) ) |
| 94 |
84 93
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( 𝐴 − 𝑈 ) ∈ ℝ ∧ 0 < ( 𝐴 − 𝑈 ) ) ) |
| 95 |
|
elrp |
⊢ ( ( 𝐴 − 𝑈 ) ∈ ℝ+ ↔ ( ( 𝐴 − 𝑈 ) ∈ ℝ ∧ 0 < ( 𝐴 − 𝑈 ) ) ) |
| 96 |
94 95
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐴 − 𝑈 ) ∈ ℝ+ ) |
| 97 |
83 77 96
|
lemuldivd |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( 𝐵 · ( 𝐴 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ↔ 𝐵 ≤ ( ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) / ( 𝐴 − 𝑈 ) ) ) ) |
| 98 |
82 97
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝐵 ≤ ( ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) / ( 𝐴 − 𝑈 ) ) ) |
| 99 |
18
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐺 ‘ 𝑊 ) = ( 𝐺 ‘ 𝑈 ) ) |
| 100 |
|
fveq2 |
⊢ ( 𝑧 = 𝑈 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑈 ) ) |
| 101 |
100
|
oveq1d |
⊢ ( 𝑧 = 𝑈 → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 102 |
|
oveq1 |
⊢ ( 𝑧 = 𝑈 → ( 𝑧 − 𝐴 ) = ( 𝑈 − 𝐴 ) ) |
| 103 |
101 102
|
oveq12d |
⊢ ( 𝑧 = 𝑈 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑧 − 𝐴 ) ) = ( ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑈 − 𝐴 ) ) ) |
| 104 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑈 − 𝐴 ) ) ∈ V ) |
| 105 |
1 103 58 104
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐺 ‘ 𝑈 ) = ( ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑈 − 𝐴 ) ) ) |
| 106 |
99 105
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐺 ‘ 𝑊 ) = ( ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑈 − 𝐴 ) ) ) |
| 107 |
106
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( 𝐺 ‘ 𝑊 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑈 − 𝐴 ) ) ) ) |
| 108 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 109 |
38
|
recnd |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
| 110 |
41
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 111 |
109 110
|
subcld |
⊢ ( 𝜑 → ( 𝑈 − 𝐴 ) ∈ ℂ ) |
| 112 |
111
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝑈 − 𝐴 ) ∈ ℂ ) |
| 113 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑈 ∈ ℂ ) |
| 114 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝐴 ∈ ℂ ) |
| 115 |
113 114 55
|
subne0d |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝑈 − 𝐴 ) ≠ 0 ) |
| 116 |
108 112 115
|
absdivd |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑈 − 𝐴 ) ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) / ( abs ‘ ( 𝑈 − 𝐴 ) ) ) ) |
| 117 |
63
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) / ( abs ‘ ( 𝑈 − 𝐴 ) ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) / ( 𝐴 − 𝑈 ) ) ) |
| 118 |
116 117
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑈 − 𝐴 ) ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) / ( 𝐴 − 𝑈 ) ) ) |
| 119 |
107 118
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( 𝐺 ‘ 𝑊 ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) / ( 𝐴 − 𝑈 ) ) ) |
| 120 |
119
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) / ( 𝐴 − 𝑈 ) ) = ( abs ‘ ( 𝐺 ‘ 𝑊 ) ) ) |
| 121 |
98 120
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝐵 ≤ ( abs ‘ ( 𝐺 ‘ 𝑊 ) ) ) |
| 122 |
70 121
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( abs ‘ ( 𝑊 − 𝐴 ) ) < 𝐷 ∧ 𝐵 ≤ ( abs ‘ ( 𝐺 ‘ 𝑊 ) ) ) ) |
| 123 |
59 122
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝑊 ∈ ( 𝑋 ∖ { 𝐴 } ) ∧ ( ( abs ‘ ( 𝑊 − 𝐴 ) ) < 𝐷 ∧ 𝐵 ≤ ( abs ‘ ( 𝐺 ‘ 𝑊 ) ) ) ) ) |
| 124 |
2
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑊 = if ( ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) , 𝑈 , 𝑉 ) ) |
| 125 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 126 |
125
|
iffalsed |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → if ( ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) , 𝑈 , 𝑉 ) = 𝑉 ) |
| 127 |
124 126
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑊 = 𝑉 ) |
| 128 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑉 ∈ 𝑋 ) |
| 129 |
38 37 42
|
abssubge0d |
⊢ ( 𝜑 → ( abs ‘ ( 𝑉 − 𝑈 ) ) = ( 𝑉 − 𝑈 ) ) |
| 130 |
129
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) = ( 𝐵 · ( 𝑉 − 𝑈 ) ) ) |
| 131 |
130
|
breq1d |
⊢ ( 𝜑 → ( ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ↔ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) ) |
| 132 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ↔ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) ) |
| 133 |
125 132
|
mtbird |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ¬ ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 134 |
4 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑉 ) ∈ ℂ ) |
| 135 |
39
|
recnd |
⊢ ( 𝜑 → ( 𝑉 − 𝑈 ) ∈ ℂ ) |
| 136 |
48 46
|
gtned |
⊢ ( 𝜑 → ( 𝑉 − 𝑈 ) ≠ 0 ) |
| 137 |
134 26
|
subcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝑈 ) ) ∈ ℂ ) |
| 138 |
137 135 136
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝑈 ) ) / ( 𝑉 − 𝑈 ) ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝑈 ) ) ) / ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ) |
| 139 |
129
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝑈 ) ) ) / ( abs ‘ ( 𝑉 − 𝑈 ) ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝑈 ) ) ) / ( 𝑉 − 𝑈 ) ) ) |
| 140 |
138 139
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝑈 ) ) / ( 𝑉 − 𝑈 ) ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝑈 ) ) ) / ( 𝑉 − 𝑈 ) ) ) |
| 141 |
140
|
eqcomd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝑈 ) ) ) / ( 𝑉 − 𝑈 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝑈 ) ) / ( 𝑉 − 𝑈 ) ) ) ) |
| 142 |
14 141
|
breqtrd |
⊢ ( 𝜑 → ( 2 · 𝐵 ) ≤ ( abs ‘ ( ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝑈 ) ) / ( 𝑉 − 𝑈 ) ) ) ) |
| 143 |
134 26 74 135 6 136 142
|
unbdqndv2lem1 |
⊢ ( 𝜑 → ( ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) ∨ ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) ) |
| 144 |
143
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) ∨ ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) ) |
| 145 |
|
orel2 |
⊢ ( ¬ ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) → ( ( ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) ∨ ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) ) |
| 146 |
133 144 145
|
sylc |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 147 |
146
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) ∧ 𝑉 = 𝐴 ) → ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 148 |
|
fveq2 |
⊢ ( 𝑉 = 𝐴 → ( 𝐹 ‘ 𝑉 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 149 |
148
|
oveq1d |
⊢ ( 𝑉 = 𝐴 → ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 150 |
149
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑉 = 𝐴 ) → ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 151 |
74
|
subidd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐴 ) ) = 0 ) |
| 152 |
151
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 = 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐴 ) ) = 0 ) |
| 153 |
150 152
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑉 = 𝐴 ) → ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) = 0 ) |
| 154 |
153
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑉 = 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) = ( abs ‘ 0 ) ) |
| 155 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑉 = 𝐴 ) → ( abs ‘ 0 ) = 0 ) |
| 156 |
154 155
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑉 = 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) = 0 ) |
| 157 |
156
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) ∧ 𝑉 = 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) = 0 ) |
| 158 |
147 157
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) ∧ 𝑉 = 𝐴 ) → ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ 0 ) |
| 159 |
130
|
breq1d |
⊢ ( 𝜑 → ( ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ 0 ↔ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ 0 ) ) |
| 160 |
51 159
|
mtbird |
⊢ ( 𝜑 → ¬ ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ 0 ) |
| 161 |
160
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ¬ ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ 0 ) |
| 162 |
161
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) ∧ 𝑉 = 𝐴 ) → ¬ ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ≤ 0 ) |
| 163 |
158 162
|
pm2.65da |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ¬ 𝑉 = 𝐴 ) |
| 164 |
163
|
neqned |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑉 ≠ 𝐴 ) |
| 165 |
128 164
|
jca |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝑉 ∈ 𝑋 ∧ 𝑉 ≠ 𝐴 ) ) |
| 166 |
|
eldifsn |
⊢ ( 𝑉 ∈ ( 𝑋 ∖ { 𝐴 } ) ↔ ( 𝑉 ∈ 𝑋 ∧ 𝑉 ≠ 𝐴 ) ) |
| 167 |
165 166
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑉 ∈ ( 𝑋 ∖ { 𝐴 } ) ) |
| 168 |
127 167
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑊 ∈ ( 𝑋 ∖ { 𝐴 } ) ) |
| 169 |
127
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝑊 − 𝐴 ) = ( 𝑉 − 𝐴 ) ) |
| 170 |
169
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( 𝑊 − 𝐴 ) ) = ( abs ‘ ( 𝑉 − 𝐴 ) ) ) |
| 171 |
41 37 12
|
abssubge0d |
⊢ ( 𝜑 → ( abs ‘ ( 𝑉 − 𝐴 ) ) = ( 𝑉 − 𝐴 ) ) |
| 172 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( 𝑉 − 𝐴 ) ) = ( 𝑉 − 𝐴 ) ) |
| 173 |
170 172
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( 𝑊 − 𝐴 ) ) = ( 𝑉 − 𝐴 ) ) |
| 174 |
37 41
|
resubcld |
⊢ ( 𝜑 → ( 𝑉 − 𝐴 ) ∈ ℝ ) |
| 175 |
38 41 37 11
|
lesub2dd |
⊢ ( 𝜑 → ( 𝑉 − 𝐴 ) ≤ ( 𝑉 − 𝑈 ) ) |
| 176 |
174 39 66 175 13
|
lelttrd |
⊢ ( 𝜑 → ( 𝑉 − 𝐴 ) < 𝐷 ) |
| 177 |
176
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝑉 − 𝐴 ) < 𝐷 ) |
| 178 |
173 177
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( 𝑊 − 𝐴 ) ) < 𝐷 ) |
| 179 |
171 174
|
eqeltrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑉 − 𝐴 ) ) ∈ ℝ ) |
| 180 |
36 179
|
remulcld |
⊢ ( 𝜑 → ( 𝐵 · ( abs ‘ ( 𝑉 − 𝐴 ) ) ) ∈ ℝ ) |
| 181 |
180
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐵 · ( abs ‘ ( 𝑉 − 𝐴 ) ) ) ∈ ℝ ) |
| 182 |
130 49
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ∈ ℝ ) |
| 183 |
182
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ∈ ℝ ) |
| 184 |
134 74
|
subcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 185 |
184
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 186 |
185
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 187 |
129 39
|
eqeltrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑉 − 𝑈 ) ) ∈ ℝ ) |
| 188 |
175 171 129
|
3brtr4d |
⊢ ( 𝜑 → ( abs ‘ ( 𝑉 − 𝐴 ) ) ≤ ( abs ‘ ( 𝑉 − 𝑈 ) ) ) |
| 189 |
179 187 36 78 188
|
lemul2ad |
⊢ ( 𝜑 → ( 𝐵 · ( abs ‘ ( 𝑉 − 𝐴 ) ) ) ≤ ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ) |
| 190 |
189
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐵 · ( abs ‘ ( 𝑉 − 𝐴 ) ) ) ≤ ( 𝐵 · ( abs ‘ ( 𝑉 − 𝑈 ) ) ) ) |
| 191 |
181 183 186 190 146
|
letrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐵 · ( abs ‘ ( 𝑉 − 𝐴 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 192 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝐵 ∈ ℝ ) |
| 193 |
174
|
recnd |
⊢ ( 𝜑 → ( 𝑉 − 𝐴 ) ∈ ℂ ) |
| 194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝑉 − 𝐴 ) ∈ ℂ ) |
| 195 |
37
|
recnd |
⊢ ( 𝜑 → 𝑉 ∈ ℂ ) |
| 196 |
195
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝑉 ∈ ℂ ) |
| 197 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝐴 ∈ ℂ ) |
| 198 |
196 197 164
|
subne0d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝑉 − 𝐴 ) ≠ 0 ) |
| 199 |
194 198
|
absrpcld |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( 𝑉 − 𝐴 ) ) ∈ ℝ+ ) |
| 200 |
192 186 199
|
lemuldivd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( 𝐵 · ( abs ‘ ( 𝑉 − 𝐴 ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) ↔ 𝐵 ≤ ( ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) / ( abs ‘ ( 𝑉 − 𝐴 ) ) ) ) ) |
| 201 |
191 200
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝐵 ≤ ( ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) / ( abs ‘ ( 𝑉 − 𝐴 ) ) ) ) |
| 202 |
127
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐺 ‘ 𝑊 ) = ( 𝐺 ‘ 𝑉 ) ) |
| 203 |
|
fveq2 |
⊢ ( 𝑧 = 𝑉 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑉 ) ) |
| 204 |
203
|
oveq1d |
⊢ ( 𝑧 = 𝑉 → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 205 |
|
oveq1 |
⊢ ( 𝑧 = 𝑉 → ( 𝑧 − 𝐴 ) = ( 𝑉 − 𝐴 ) ) |
| 206 |
204 205
|
oveq12d |
⊢ ( 𝑧 = 𝑉 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑧 − 𝐴 ) ) = ( ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑉 − 𝐴 ) ) ) |
| 207 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑉 − 𝐴 ) ) ∈ V ) |
| 208 |
1 206 167 207
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐺 ‘ 𝑉 ) = ( ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑉 − 𝐴 ) ) ) |
| 209 |
202 208
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝐺 ‘ 𝑊 ) = ( ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑉 − 𝐴 ) ) ) |
| 210 |
209
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( 𝐺 ‘ 𝑊 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑉 − 𝐴 ) ) ) ) |
| 211 |
184
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 212 |
211 194 198
|
absdivd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑉 − 𝐴 ) ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) / ( abs ‘ ( 𝑉 − 𝐴 ) ) ) ) |
| 213 |
210 212
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( abs ‘ ( 𝐺 ‘ 𝑊 ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) / ( abs ‘ ( 𝑉 − 𝐴 ) ) ) ) |
| 214 |
213
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑉 ) − ( 𝐹 ‘ 𝐴 ) ) ) / ( abs ‘ ( 𝑉 − 𝐴 ) ) ) = ( abs ‘ ( 𝐺 ‘ 𝑊 ) ) ) |
| 215 |
201 214
|
breqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → 𝐵 ≤ ( abs ‘ ( 𝐺 ‘ 𝑊 ) ) ) |
| 216 |
178 215
|
jca |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( abs ‘ ( 𝑊 − 𝐴 ) ) < 𝐷 ∧ 𝐵 ≤ ( abs ‘ ( 𝐺 ‘ 𝑊 ) ) ) ) |
| 217 |
168 216
|
jca |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐵 · ( 𝑉 − 𝑈 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑈 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) → ( 𝑊 ∈ ( 𝑋 ∖ { 𝐴 } ) ∧ ( ( abs ‘ ( 𝑊 − 𝐴 ) ) < 𝐷 ∧ 𝐵 ≤ ( abs ‘ ( 𝐺 ‘ 𝑊 ) ) ) ) ) |
| 218 |
123 217
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝑊 ∈ ( 𝑋 ∖ { 𝐴 } ) ∧ ( ( abs ‘ ( 𝑊 − 𝐴 ) ) < 𝐷 ∧ 𝐵 ≤ ( abs ‘ ( 𝐺 ‘ 𝑊 ) ) ) ) ) |