| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unbdqndv2lem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
unbdqndv2lem1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
unbdqndv2lem1.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 4 |
|
unbdqndv2lem1.d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 5 |
|
unbdqndv2lem1.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 6 |
|
unbdqndv2lem1.1 |
⊢ ( 𝜑 → 𝐷 ≠ 0 ) |
| 7 |
|
unbdqndv2lem1.2 |
⊢ ( 𝜑 → ( 2 · 𝐸 ) ≤ ( abs ‘ ( ( 𝐴 − 𝐵 ) / 𝐷 ) ) ) |
| 8 |
1 2
|
subcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 9 |
8 4 6
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 − 𝐵 ) / 𝐷 ) ) = ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐷 ) ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( abs ‘ ( ( 𝐴 − 𝐵 ) / 𝐷 ) ) = ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐷 ) ) ) |
| 11 |
8
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 13 |
1 3
|
subcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) ∈ ℂ ) |
| 14 |
13
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐶 ) ) ∈ ℝ ) |
| 15 |
2 3
|
subcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 16 |
15
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐶 ) ) ∈ ℝ ) |
| 17 |
14 16
|
readdcld |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ∈ ℝ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ∈ ℝ ) |
| 19 |
|
2re |
⊢ 2 ∈ ℝ |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 21 |
5
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 22 |
20 21
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝐸 ) ∈ ℝ ) |
| 23 |
4
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐷 ) ∈ ℝ ) |
| 24 |
22 23
|
remulcld |
⊢ ( 𝜑 → ( ( 2 · 𝐸 ) · ( abs ‘ 𝐷 ) ) ∈ ℝ ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( ( 2 · 𝐸 ) · ( abs ‘ 𝐷 ) ) ∈ ℝ ) |
| 26 |
1 2 3
|
abs3difd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) ) |
| 27 |
3 2
|
abssubd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐶 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) = ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 29 |
26 28
|
breqtrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 31 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( abs ‘ ( 𝐴 − 𝐶 ) ) ∈ ℝ ) |
| 32 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) ∈ ℝ ) |
| 33 |
21 23
|
remulcld |
⊢ ( 𝜑 → ( 𝐸 · ( abs ‘ 𝐷 ) ) ∈ ℝ ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( 𝐸 · ( abs ‘ 𝐷 ) ) ∈ ℝ ) |
| 35 |
|
pm2.45 |
⊢ ( ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) → ¬ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ¬ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ) |
| 37 |
14 33
|
ltnled |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐸 · ( abs ‘ 𝐷 ) ) ↔ ¬ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐸 · ( abs ‘ 𝐷 ) ) ↔ ¬ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ) ) |
| 39 |
36 38
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐸 · ( abs ‘ 𝐷 ) ) ) |
| 40 |
|
pm2.46 |
⊢ ( ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) → ¬ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ¬ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
| 42 |
16 33
|
ltnled |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 − 𝐶 ) ) < ( 𝐸 · ( abs ‘ 𝐷 ) ) ↔ ¬ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( ( abs ‘ ( 𝐵 − 𝐶 ) ) < ( 𝐸 · ( abs ‘ 𝐷 ) ) ↔ ¬ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 44 |
41 43
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ( 𝐸 · ( abs ‘ 𝐷 ) ) ) |
| 45 |
31 32 34 34 39 44
|
lt2addd |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐵 − 𝐶 ) ) ) < ( ( 𝐸 · ( abs ‘ 𝐷 ) ) + ( 𝐸 · ( abs ‘ 𝐷 ) ) ) ) |
| 46 |
33
|
recnd |
⊢ ( 𝜑 → ( 𝐸 · ( abs ‘ 𝐷 ) ) ∈ ℂ ) |
| 47 |
46
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( 𝐸 · ( abs ‘ 𝐷 ) ) ) = ( ( 𝐸 · ( abs ‘ 𝐷 ) ) + ( 𝐸 · ( abs ‘ 𝐷 ) ) ) ) |
| 48 |
47
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝐸 · ( abs ‘ 𝐷 ) ) + ( 𝐸 · ( abs ‘ 𝐷 ) ) ) = ( 2 · ( 𝐸 · ( abs ‘ 𝐷 ) ) ) ) |
| 49 |
20
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 50 |
21
|
recnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 51 |
23
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝐷 ) ∈ ℂ ) |
| 52 |
49 50 51
|
mulassd |
⊢ ( 𝜑 → ( ( 2 · 𝐸 ) · ( abs ‘ 𝐷 ) ) = ( 2 · ( 𝐸 · ( abs ‘ 𝐷 ) ) ) ) |
| 53 |
52
|
eqcomd |
⊢ ( 𝜑 → ( 2 · ( 𝐸 · ( abs ‘ 𝐷 ) ) ) = ( ( 2 · 𝐸 ) · ( abs ‘ 𝐷 ) ) ) |
| 54 |
48 53
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐸 · ( abs ‘ 𝐷 ) ) + ( 𝐸 · ( abs ‘ 𝐷 ) ) ) = ( ( 2 · 𝐸 ) · ( abs ‘ 𝐷 ) ) ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( ( 𝐸 · ( abs ‘ 𝐷 ) ) + ( 𝐸 · ( abs ‘ 𝐷 ) ) ) = ( ( 2 · 𝐸 ) · ( abs ‘ 𝐷 ) ) ) |
| 56 |
45 55
|
breqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐵 − 𝐶 ) ) ) < ( ( 2 · 𝐸 ) · ( abs ‘ 𝐷 ) ) ) |
| 57 |
12 18 25 30 56
|
lelttrd |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( 2 · 𝐸 ) · ( abs ‘ 𝐷 ) ) ) |
| 58 |
|
absgt0 |
⊢ ( 𝐷 ∈ ℂ → ( 𝐷 ≠ 0 ↔ 0 < ( abs ‘ 𝐷 ) ) ) |
| 59 |
4 58
|
syl |
⊢ ( 𝜑 → ( 𝐷 ≠ 0 ↔ 0 < ( abs ‘ 𝐷 ) ) ) |
| 60 |
6 59
|
mpbid |
⊢ ( 𝜑 → 0 < ( abs ‘ 𝐷 ) ) |
| 61 |
23 60
|
jca |
⊢ ( 𝜑 → ( ( abs ‘ 𝐷 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐷 ) ) ) |
| 62 |
11 22 61
|
3jca |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ∧ ( 2 · 𝐸 ) ∈ ℝ ∧ ( ( abs ‘ 𝐷 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐷 ) ) ) ) |
| 63 |
|
ltdivmul2 |
⊢ ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ∧ ( 2 · 𝐸 ) ∈ ℝ ∧ ( ( abs ‘ 𝐷 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐷 ) ) ) → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐷 ) ) < ( 2 · 𝐸 ) ↔ ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( 2 · 𝐸 ) · ( abs ‘ 𝐷 ) ) ) ) |
| 64 |
62 63
|
syl |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐷 ) ) < ( 2 · 𝐸 ) ↔ ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( 2 · 𝐸 ) · ( abs ‘ 𝐷 ) ) ) ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐷 ) ) < ( 2 · 𝐸 ) ↔ ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( 2 · 𝐸 ) · ( abs ‘ 𝐷 ) ) ) ) |
| 66 |
57 65
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐷 ) ) < ( 2 · 𝐸 ) ) |
| 67 |
10 66
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ( abs ‘ ( ( 𝐴 − 𝐵 ) / 𝐷 ) ) < ( 2 · 𝐸 ) ) |
| 68 |
8 4 6
|
divcld |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / 𝐷 ) ∈ ℂ ) |
| 69 |
68
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 − 𝐵 ) / 𝐷 ) ) ∈ ℝ ) |
| 70 |
22 69
|
lenltd |
⊢ ( 𝜑 → ( ( 2 · 𝐸 ) ≤ ( abs ‘ ( ( 𝐴 − 𝐵 ) / 𝐷 ) ) ↔ ¬ ( abs ‘ ( ( 𝐴 − 𝐵 ) / 𝐷 ) ) < ( 2 · 𝐸 ) ) ) |
| 71 |
7 70
|
mpbid |
⊢ ( 𝜑 → ¬ ( abs ‘ ( ( 𝐴 − 𝐵 ) / 𝐷 ) ) < ( 2 · 𝐸 ) ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) → ¬ ( abs ‘ ( ( 𝐴 − 𝐵 ) / 𝐷 ) ) < ( 2 · 𝐸 ) ) |
| 73 |
67 72
|
condan |
⊢ ( 𝜑 → ( ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐶 ) ) ∨ ( 𝐸 · ( abs ‘ 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) |