Metamath Proof Explorer


Theorem unbdqndv2lem1

Description: Lemma for unbdqndv2 . (Contributed by Asger C. Ipsen, 12-May-2021)

Ref Expression
Hypotheses unbdqndv2lem1.a φ A
unbdqndv2lem1.b φ B
unbdqndv2lem1.c φ C
unbdqndv2lem1.d φ D
unbdqndv2lem1.e φ E +
unbdqndv2lem1.1 φ D 0
unbdqndv2lem1.2 φ 2 E A B D
Assertion unbdqndv2lem1 φ E D A C E D B C

Proof

Step Hyp Ref Expression
1 unbdqndv2lem1.a φ A
2 unbdqndv2lem1.b φ B
3 unbdqndv2lem1.c φ C
4 unbdqndv2lem1.d φ D
5 unbdqndv2lem1.e φ E +
6 unbdqndv2lem1.1 φ D 0
7 unbdqndv2lem1.2 φ 2 E A B D
8 1 2 subcld φ A B
9 8 4 6 absdivd φ A B D = A B D
10 9 adantr φ ¬ E D A C E D B C A B D = A B D
11 8 abscld φ A B
12 11 adantr φ ¬ E D A C E D B C A B
13 1 3 subcld φ A C
14 13 abscld φ A C
15 2 3 subcld φ B C
16 15 abscld φ B C
17 14 16 readdcld φ A C + B C
18 17 adantr φ ¬ E D A C E D B C A C + B C
19 2re 2
20 19 a1i φ 2
21 5 rpred φ E
22 20 21 remulcld φ 2 E
23 4 abscld φ D
24 22 23 remulcld φ 2 E D
25 24 adantr φ ¬ E D A C E D B C 2 E D
26 1 2 3 abs3difd φ A B A C + C B
27 3 2 abssubd φ C B = B C
28 27 oveq2d φ A C + C B = A C + B C
29 26 28 breqtrd φ A B A C + B C
30 29 adantr φ ¬ E D A C E D B C A B A C + B C
31 14 adantr φ ¬ E D A C E D B C A C
32 16 adantr φ ¬ E D A C E D B C B C
33 21 23 remulcld φ E D
34 33 adantr φ ¬ E D A C E D B C E D
35 pm2.45 ¬ E D A C E D B C ¬ E D A C
36 35 adantl φ ¬ E D A C E D B C ¬ E D A C
37 14 33 ltnled φ A C < E D ¬ E D A C
38 37 adantr φ ¬ E D A C E D B C A C < E D ¬ E D A C
39 36 38 mpbird φ ¬ E D A C E D B C A C < E D
40 pm2.46 ¬ E D A C E D B C ¬ E D B C
41 40 adantl φ ¬ E D A C E D B C ¬ E D B C
42 16 33 ltnled φ B C < E D ¬ E D B C
43 42 adantr φ ¬ E D A C E D B C B C < E D ¬ E D B C
44 41 43 mpbird φ ¬ E D A C E D B C B C < E D
45 31 32 34 34 39 44 lt2addd φ ¬ E D A C E D B C A C + B C < E D + E D
46 33 recnd φ E D
47 46 2timesd φ 2 E D = E D + E D
48 47 eqcomd φ E D + E D = 2 E D
49 20 recnd φ 2
50 21 recnd φ E
51 23 recnd φ D
52 49 50 51 mulassd φ 2 E D = 2 E D
53 52 eqcomd φ 2 E D = 2 E D
54 48 53 eqtrd φ E D + E D = 2 E D
55 54 adantr φ ¬ E D A C E D B C E D + E D = 2 E D
56 45 55 breqtrd φ ¬ E D A C E D B C A C + B C < 2 E D
57 12 18 25 30 56 lelttrd φ ¬ E D A C E D B C A B < 2 E D
58 absgt0 D D 0 0 < D
59 4 58 syl φ D 0 0 < D
60 6 59 mpbid φ 0 < D
61 23 60 jca φ D 0 < D
62 11 22 61 3jca φ A B 2 E D 0 < D
63 ltdivmul2 A B 2 E D 0 < D A B D < 2 E A B < 2 E D
64 62 63 syl φ A B D < 2 E A B < 2 E D
65 64 adantr φ ¬ E D A C E D B C A B D < 2 E A B < 2 E D
66 57 65 mpbird φ ¬ E D A C E D B C A B D < 2 E
67 10 66 eqbrtrd φ ¬ E D A C E D B C A B D < 2 E
68 8 4 6 divcld φ A B D
69 68 abscld φ A B D
70 22 69 lenltd φ 2 E A B D ¬ A B D < 2 E
71 7 70 mpbid φ ¬ A B D < 2 E
72 71 adantr φ ¬ E D A C E D B C ¬ A B D < 2 E
73 67 72 condan φ E D A C E D B C