Metamath Proof Explorer


Theorem knoppcn2

Description: Variant of knoppcn with different codomain. (Contributed by Asger C. Ipsen, 25-Aug-2021)

Ref Expression
Hypotheses knoppcn2.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
knoppcn2.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
knoppcn2.w 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) )
knoppcn2.n ( 𝜑𝑁 ∈ ℕ )
knoppcn2.c ( 𝜑𝐶 ∈ ( - 1 (,) 1 ) )
Assertion knoppcn2 ( 𝜑𝑊 ∈ ( ℝ –cn→ ℝ ) )

Proof

Step Hyp Ref Expression
1 knoppcn2.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
2 knoppcn2.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
3 knoppcn2.w 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) )
4 knoppcn2.n ( 𝜑𝑁 ∈ ℕ )
5 knoppcn2.c ( 𝜑𝐶 ∈ ( - 1 (,) 1 ) )
6 1 2 3 5 4 knoppf ( 𝜑𝑊 : ℝ ⟶ ℝ )
7 ax-resscn ℝ ⊆ ℂ
8 7 a1i ( 𝜑 → ℝ ⊆ ℂ )
9 5 knoppndvlem3 ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) )
10 9 simpld ( 𝜑𝐶 ∈ ℝ )
11 9 simprd ( 𝜑 → ( abs ‘ 𝐶 ) < 1 )
12 1 2 3 4 10 11 knoppcn ( 𝜑𝑊 ∈ ( ℝ –cn→ ℂ ) )
13 8 12 jca ( 𝜑 → ( ℝ ⊆ ℂ ∧ 𝑊 ∈ ( ℝ –cn→ ℂ ) ) )
14 cncffvrn ( ( ℝ ⊆ ℂ ∧ 𝑊 ∈ ( ℝ –cn→ ℂ ) ) → ( 𝑊 ∈ ( ℝ –cn→ ℝ ) ↔ 𝑊 : ℝ ⟶ ℝ ) )
15 13 14 syl ( 𝜑 → ( 𝑊 ∈ ( ℝ –cn→ ℝ ) ↔ 𝑊 : ℝ ⟶ ℝ ) )
16 6 15 mpbird ( 𝜑𝑊 ∈ ( ℝ –cn→ ℝ ) )