Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcn2.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
knoppcn2.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
knoppcn2.w |
⊢ 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) |
4 |
|
knoppcn2.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
5 |
|
knoppcn2.c |
⊢ ( 𝜑 → 𝐶 ∈ ( - 1 (,) 1 ) ) |
6 |
1 2 3 5 4
|
knoppf |
⊢ ( 𝜑 → 𝑊 : ℝ ⟶ ℝ ) |
7 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
8 |
7
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
9 |
5
|
knoppndvlem3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) ) |
10 |
9
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
11 |
9
|
simprd |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) < 1 ) |
12 |
1 2 3 4 10 11
|
knoppcn |
⊢ ( 𝜑 → 𝑊 ∈ ( ℝ –cn→ ℂ ) ) |
13 |
8 12
|
jca |
⊢ ( 𝜑 → ( ℝ ⊆ ℂ ∧ 𝑊 ∈ ( ℝ –cn→ ℂ ) ) ) |
14 |
|
cncffvrn |
⊢ ( ( ℝ ⊆ ℂ ∧ 𝑊 ∈ ( ℝ –cn→ ℂ ) ) → ( 𝑊 ∈ ( ℝ –cn→ ℝ ) ↔ 𝑊 : ℝ ⟶ ℝ ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ( 𝑊 ∈ ( ℝ –cn→ ℝ ) ↔ 𝑊 : ℝ ⟶ ℝ ) ) |
16 |
6 15
|
mpbird |
⊢ ( 𝜑 → 𝑊 ∈ ( ℝ –cn→ ℝ ) ) |