Step |
Hyp |
Ref |
Expression |
1 |
|
cnndvlem1.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
cnndvlem1.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 1 / 2 ) ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 3 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
cnndvlem1.w |
⊢ 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) |
4 |
|
3nn |
⊢ 3 ∈ ℕ |
5 |
4
|
a1i |
⊢ ( ⊤ → 3 ∈ ℕ ) |
6 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
7 |
6
|
rexri |
⊢ - 1 ∈ ℝ* |
8 |
|
1re |
⊢ 1 ∈ ℝ |
9 |
8
|
rexri |
⊢ 1 ∈ ℝ* |
10 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
11 |
10
|
rexri |
⊢ ( 1 / 2 ) ∈ ℝ* |
12 |
7 9 11
|
3pm3.2i |
⊢ ( - 1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ( 1 / 2 ) ∈ ℝ* ) |
13 |
|
neg1lt0 |
⊢ - 1 < 0 |
14 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
15 |
13 14
|
pm3.2i |
⊢ ( - 1 < 0 ∧ 0 < ( 1 / 2 ) ) |
16 |
|
0re |
⊢ 0 ∈ ℝ |
17 |
6 16 10
|
lttri |
⊢ ( ( - 1 < 0 ∧ 0 < ( 1 / 2 ) ) → - 1 < ( 1 / 2 ) ) |
18 |
15 17
|
ax-mp |
⊢ - 1 < ( 1 / 2 ) |
19 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
20 |
18 19
|
pm3.2i |
⊢ ( - 1 < ( 1 / 2 ) ∧ ( 1 / 2 ) < 1 ) |
21 |
12 20
|
pm3.2i |
⊢ ( ( - 1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ( 1 / 2 ) ∈ ℝ* ) ∧ ( - 1 < ( 1 / 2 ) ∧ ( 1 / 2 ) < 1 ) ) |
22 |
|
elioo3g |
⊢ ( ( 1 / 2 ) ∈ ( - 1 (,) 1 ) ↔ ( ( - 1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ( 1 / 2 ) ∈ ℝ* ) ∧ ( - 1 < ( 1 / 2 ) ∧ ( 1 / 2 ) < 1 ) ) ) |
23 |
21 22
|
mpbir |
⊢ ( 1 / 2 ) ∈ ( - 1 (,) 1 ) |
24 |
23
|
a1i |
⊢ ( ⊤ → ( 1 / 2 ) ∈ ( - 1 (,) 1 ) ) |
25 |
1 2 3 5 24
|
knoppcn2 |
⊢ ( ⊤ → 𝑊 ∈ ( ℝ –cn→ ℝ ) ) |
26 |
25
|
mptru |
⊢ 𝑊 ∈ ( ℝ –cn→ ℝ ) |
27 |
|
2cn |
⊢ 2 ∈ ℂ |
28 |
27
|
mulid2i |
⊢ ( 1 · 2 ) = 2 |
29 |
|
2lt3 |
⊢ 2 < 3 |
30 |
28 29
|
eqbrtri |
⊢ ( 1 · 2 ) < 3 |
31 |
|
2pos |
⊢ 0 < 2 |
32 |
4
|
nnrei |
⊢ 3 ∈ ℝ |
33 |
|
2re |
⊢ 2 ∈ ℝ |
34 |
8 32 33
|
ltmuldivi |
⊢ ( 0 < 2 → ( ( 1 · 2 ) < 3 ↔ 1 < ( 3 / 2 ) ) ) |
35 |
31 34
|
ax-mp |
⊢ ( ( 1 · 2 ) < 3 ↔ 1 < ( 3 / 2 ) ) |
36 |
30 35
|
mpbi |
⊢ 1 < ( 3 / 2 ) |
37 |
16 10 14
|
ltleii |
⊢ 0 ≤ ( 1 / 2 ) |
38 |
10
|
absidi |
⊢ ( 0 ≤ ( 1 / 2 ) → ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) ) |
39 |
37 38
|
ax-mp |
⊢ ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) |
40 |
39
|
oveq2i |
⊢ ( 3 · ( abs ‘ ( 1 / 2 ) ) ) = ( 3 · ( 1 / 2 ) ) |
41 |
4
|
nncni |
⊢ 3 ∈ ℂ |
42 |
|
2ne0 |
⊢ 2 ≠ 0 |
43 |
41 27 42
|
divreci |
⊢ ( 3 / 2 ) = ( 3 · ( 1 / 2 ) ) |
44 |
43
|
eqcomi |
⊢ ( 3 · ( 1 / 2 ) ) = ( 3 / 2 ) |
45 |
40 44
|
eqtri |
⊢ ( 3 · ( abs ‘ ( 1 / 2 ) ) ) = ( 3 / 2 ) |
46 |
36 45
|
breqtrri |
⊢ 1 < ( 3 · ( abs ‘ ( 1 / 2 ) ) ) |
47 |
46
|
a1i |
⊢ ( ⊤ → 1 < ( 3 · ( abs ‘ ( 1 / 2 ) ) ) ) |
48 |
1 2 3 24 5 47
|
knoppndv |
⊢ ( ⊤ → dom ( ℝ D 𝑊 ) = ∅ ) |
49 |
48
|
mptru |
⊢ dom ( ℝ D 𝑊 ) = ∅ |
50 |
26 49
|
pm3.2i |
⊢ ( 𝑊 ∈ ( ℝ –cn→ ℝ ) ∧ dom ( ℝ D 𝑊 ) = ∅ ) |