Step |
Hyp |
Ref |
Expression |
1 |
|
cnndvlem2.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
cnndvlem2.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 1 / 2 ) ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 3 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
cnndvlem2.w |
⊢ 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) |
4 |
1 2 3
|
cnndvlem1 |
⊢ ( 𝑊 ∈ ( ℝ –cn→ ℝ ) ∧ dom ( ℝ D 𝑊 ) = ∅ ) |
5 |
|
reex |
⊢ ℝ ∈ V |
6 |
5
|
mptex |
⊢ ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) ∈ V |
7 |
3 6
|
eqeltri |
⊢ 𝑊 ∈ V |
8 |
|
eleq1 |
⊢ ( 𝑓 = 𝑊 → ( 𝑓 ∈ ( ℝ –cn→ ℝ ) ↔ 𝑊 ∈ ( ℝ –cn→ ℝ ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑓 = 𝑊 → ( ℝ D 𝑓 ) = ( ℝ D 𝑊 ) ) |
10 |
9
|
dmeqd |
⊢ ( 𝑓 = 𝑊 → dom ( ℝ D 𝑓 ) = dom ( ℝ D 𝑊 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑓 = 𝑊 → ( dom ( ℝ D 𝑓 ) = ∅ ↔ dom ( ℝ D 𝑊 ) = ∅ ) ) |
12 |
8 11
|
anbi12d |
⊢ ( 𝑓 = 𝑊 → ( ( 𝑓 ∈ ( ℝ –cn→ ℝ ) ∧ dom ( ℝ D 𝑓 ) = ∅ ) ↔ ( 𝑊 ∈ ( ℝ –cn→ ℝ ) ∧ dom ( ℝ D 𝑊 ) = ∅ ) ) ) |
13 |
7 12
|
spcev |
⊢ ( ( 𝑊 ∈ ( ℝ –cn→ ℝ ) ∧ dom ( ℝ D 𝑊 ) = ∅ ) → ∃ 𝑓 ( 𝑓 ∈ ( ℝ –cn→ ℝ ) ∧ dom ( ℝ D 𝑓 ) = ∅ ) ) |
14 |
4 13
|
ax-mp |
⊢ ∃ 𝑓 ( 𝑓 ∈ ( ℝ –cn→ ℝ ) ∧ dom ( ℝ D 𝑓 ) = ∅ ) |