Metamath Proof Explorer


Theorem cnndvlem2

Description: Lemma for cnndv . (Contributed by Asger C. Ipsen, 26-Aug-2021)

Ref Expression
Hypotheses cnndvlem2.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
cnndvlem2.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 1 / 2 ) ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 3 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
cnndvlem2.w 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) )
Assertion cnndvlem2 𝑓 ( 𝑓 ∈ ( ℝ –cn→ ℝ ) ∧ dom ( ℝ D 𝑓 ) = ∅ )

Proof

Step Hyp Ref Expression
1 cnndvlem2.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
2 cnndvlem2.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 1 / 2 ) ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 3 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
3 cnndvlem2.w 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) )
4 1 2 3 cnndvlem1 ( 𝑊 ∈ ( ℝ –cn→ ℝ ) ∧ dom ( ℝ D 𝑊 ) = ∅ )
5 reex ℝ ∈ V
6 5 mptex ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) ) ∈ V
7 3 6 eqeltri 𝑊 ∈ V
8 eleq1 ( 𝑓 = 𝑊 → ( 𝑓 ∈ ( ℝ –cn→ ℝ ) ↔ 𝑊 ∈ ( ℝ –cn→ ℝ ) ) )
9 oveq2 ( 𝑓 = 𝑊 → ( ℝ D 𝑓 ) = ( ℝ D 𝑊 ) )
10 9 dmeqd ( 𝑓 = 𝑊 → dom ( ℝ D 𝑓 ) = dom ( ℝ D 𝑊 ) )
11 10 eqeq1d ( 𝑓 = 𝑊 → ( dom ( ℝ D 𝑓 ) = ∅ ↔ dom ( ℝ D 𝑊 ) = ∅ ) )
12 8 11 anbi12d ( 𝑓 = 𝑊 → ( ( 𝑓 ∈ ( ℝ –cn→ ℝ ) ∧ dom ( ℝ D 𝑓 ) = ∅ ) ↔ ( 𝑊 ∈ ( ℝ –cn→ ℝ ) ∧ dom ( ℝ D 𝑊 ) = ∅ ) ) )
13 7 12 spcev ( ( 𝑊 ∈ ( ℝ –cn→ ℝ ) ∧ dom ( ℝ D 𝑊 ) = ∅ ) → ∃ 𝑓 ( 𝑓 ∈ ( ℝ –cn→ ℝ ) ∧ dom ( ℝ D 𝑓 ) = ∅ ) )
14 4 13 ax-mp 𝑓 ( 𝑓 ∈ ( ℝ –cn→ ℝ ) ∧ dom ( ℝ D 𝑓 ) = ∅ )