Step |
Hyp |
Ref |
Expression |
1 |
|
cnndvlem2.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
cnndvlem2.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( ( 1 / 2 ) ^ n ) x. ( T ` ( ( ( 2 x. 3 ) ^ n ) x. y ) ) ) ) ) |
3 |
|
cnndvlem2.w |
|- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) |
4 |
1 2 3
|
cnndvlem1 |
|- ( W e. ( RR -cn-> RR ) /\ dom ( RR _D W ) = (/) ) |
5 |
|
reex |
|- RR e. _V |
6 |
5
|
mptex |
|- ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) e. _V |
7 |
3 6
|
eqeltri |
|- W e. _V |
8 |
|
eleq1 |
|- ( f = W -> ( f e. ( RR -cn-> RR ) <-> W e. ( RR -cn-> RR ) ) ) |
9 |
|
oveq2 |
|- ( f = W -> ( RR _D f ) = ( RR _D W ) ) |
10 |
9
|
dmeqd |
|- ( f = W -> dom ( RR _D f ) = dom ( RR _D W ) ) |
11 |
10
|
eqeq1d |
|- ( f = W -> ( dom ( RR _D f ) = (/) <-> dom ( RR _D W ) = (/) ) ) |
12 |
8 11
|
anbi12d |
|- ( f = W -> ( ( f e. ( RR -cn-> RR ) /\ dom ( RR _D f ) = (/) ) <-> ( W e. ( RR -cn-> RR ) /\ dom ( RR _D W ) = (/) ) ) ) |
13 |
7 12
|
spcev |
|- ( ( W e. ( RR -cn-> RR ) /\ dom ( RR _D W ) = (/) ) -> E. f ( f e. ( RR -cn-> RR ) /\ dom ( RR _D f ) = (/) ) ) |
14 |
4 13
|
ax-mp |
|- E. f ( f e. ( RR -cn-> RR ) /\ dom ( RR _D f ) = (/) ) |