Metamath Proof Explorer


Theorem cnndvlem2

Description: Lemma for cnndv . (Contributed by Asger C. Ipsen, 26-Aug-2021)

Ref Expression
Hypotheses cnndvlem2.t
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
cnndvlem2.f
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( ( 1 / 2 ) ^ n ) x. ( T ` ( ( ( 2 x. 3 ) ^ n ) x. y ) ) ) ) )
cnndvlem2.w
|- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) )
Assertion cnndvlem2
|- E. f ( f e. ( RR -cn-> RR ) /\ dom ( RR _D f ) = (/) )

Proof

Step Hyp Ref Expression
1 cnndvlem2.t
 |-  T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
2 cnndvlem2.f
 |-  F = ( y e. RR |-> ( n e. NN0 |-> ( ( ( 1 / 2 ) ^ n ) x. ( T ` ( ( ( 2 x. 3 ) ^ n ) x. y ) ) ) ) )
3 cnndvlem2.w
 |-  W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) )
4 1 2 3 cnndvlem1
 |-  ( W e. ( RR -cn-> RR ) /\ dom ( RR _D W ) = (/) )
5 reex
 |-  RR e. _V
6 5 mptex
 |-  ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) e. _V
7 3 6 eqeltri
 |-  W e. _V
8 eleq1
 |-  ( f = W -> ( f e. ( RR -cn-> RR ) <-> W e. ( RR -cn-> RR ) ) )
9 oveq2
 |-  ( f = W -> ( RR _D f ) = ( RR _D W ) )
10 9 dmeqd
 |-  ( f = W -> dom ( RR _D f ) = dom ( RR _D W ) )
11 10 eqeq1d
 |-  ( f = W -> ( dom ( RR _D f ) = (/) <-> dom ( RR _D W ) = (/) ) )
12 8 11 anbi12d
 |-  ( f = W -> ( ( f e. ( RR -cn-> RR ) /\ dom ( RR _D f ) = (/) ) <-> ( W e. ( RR -cn-> RR ) /\ dom ( RR _D W ) = (/) ) ) )
13 7 12 spcev
 |-  ( ( W e. ( RR -cn-> RR ) /\ dom ( RR _D W ) = (/) ) -> E. f ( f e. ( RR -cn-> RR ) /\ dom ( RR _D f ) = (/) ) )
14 4 13 ax-mp
 |-  E. f ( f e. ( RR -cn-> RR ) /\ dom ( RR _D f ) = (/) )