Description: There exists a continuous nowhere differentiable function. The result follows directly from knoppcn and knoppndv . (Contributed by Asger C. Ipsen, 26-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cnndv | |- E. f ( f e. ( RR -cn-> RR ) /\ dom ( RR _D f ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
|
2 | eqid | |- ( y e. RR |-> ( n e. NN0 |-> ( ( ( 1 / 2 ) ^ n ) x. ( ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) ` ( ( ( 2 x. 3 ) ^ n ) x. y ) ) ) ) ) = ( y e. RR |-> ( n e. NN0 |-> ( ( ( 1 / 2 ) ^ n ) x. ( ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) ` ( ( ( 2 x. 3 ) ^ n ) x. y ) ) ) ) ) |
|
3 | eqid | |- ( w e. RR |-> sum_ i e. NN0 ( ( ( y e. RR |-> ( n e. NN0 |-> ( ( ( 1 / 2 ) ^ n ) x. ( ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) ` ( ( ( 2 x. 3 ) ^ n ) x. y ) ) ) ) ) ` w ) ` i ) ) = ( w e. RR |-> sum_ i e. NN0 ( ( ( y e. RR |-> ( n e. NN0 |-> ( ( ( 1 / 2 ) ^ n ) x. ( ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) ` ( ( ( 2 x. 3 ) ^ n ) x. y ) ) ) ) ) ` w ) ` i ) ) |
|
4 | 1 2 3 | cnndvlem2 | |- E. f ( f e. ( RR -cn-> RR ) /\ dom ( RR _D f ) = (/) ) |