Metamath Proof Explorer


Theorem cnndv

Description: There exists a continuous nowhere differentiable function. The result follows directly from knoppcn and knoppndv . (Contributed by Asger C. Ipsen, 26-Aug-2021)

Ref Expression
Assertion cnndv f f : cn dom f =

Proof

Step Hyp Ref Expression
1 eqid x x + 1 2 x = x x + 1 2 x
2 eqid y n 0 1 2 n x x + 1 2 x 2 3 n y = y n 0 1 2 n x x + 1 2 x 2 3 n y
3 eqid w i 0 y n 0 1 2 n x x + 1 2 x 2 3 n y w i = w i 0 y n 0 1 2 n x x + 1 2 x 2 3 n y w i
4 1 2 3 cnndvlem2 f f : cn dom f =