Metamath Proof Explorer


Theorem kqf

Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion kqf KQ : Top ⟶ Kol2

Proof

Step Hyp Ref Expression
1 ovex ( 𝑗 qTop ( 𝑥 𝑗 ↦ { 𝑦𝑗𝑥𝑦 } ) ) ∈ V
2 df-kq KQ = ( 𝑗 ∈ Top ↦ ( 𝑗 qTop ( 𝑥 𝑗 ↦ { 𝑦𝑗𝑥𝑦 } ) ) )
3 1 2 fnmpti KQ Fn Top
4 kqt0 ( 𝑥 ∈ Top ↔ ( KQ ‘ 𝑥 ) ∈ Kol2 )
5 4 biimpi ( 𝑥 ∈ Top → ( KQ ‘ 𝑥 ) ∈ Kol2 )
6 5 rgen 𝑥 ∈ Top ( KQ ‘ 𝑥 ) ∈ Kol2
7 ffnfv ( KQ : Top ⟶ Kol2 ↔ ( KQ Fn Top ∧ ∀ 𝑥 ∈ Top ( KQ ‘ 𝑥 ) ∈ Kol2 ) )
8 3 6 7 mpbir2an KQ : Top ⟶ Kol2