Metamath Proof Explorer


Theorem kqreg

Description: The Kolmogorov quotient of a regular space is regular. By regr1 it is also Hausdorff, so we can also say that a space is regular iff the Kolmogorov quotient is regular Hausdorff (T_3). (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion kqreg ( 𝐽 ∈ Reg ↔ ( KQ ‘ 𝐽 ) ∈ Reg )

Proof

Step Hyp Ref Expression
1 regtop ( 𝐽 ∈ Reg → 𝐽 ∈ Top )
2 toptopon2 ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
3 1 2 sylib ( 𝐽 ∈ Reg → 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
4 eqid ( 𝑥 𝐽 ↦ { 𝑦𝐽𝑥𝑦 } ) = ( 𝑥 𝐽 ↦ { 𝑦𝐽𝑥𝑦 } )
5 4 kqreglem1 ( ( 𝐽 ∈ ( TopOn ‘ 𝐽 ) ∧ 𝐽 ∈ Reg ) → ( KQ ‘ 𝐽 ) ∈ Reg )
6 3 5 mpancom ( 𝐽 ∈ Reg → ( KQ ‘ 𝐽 ) ∈ Reg )
7 regtop ( ( KQ ‘ 𝐽 ) ∈ Reg → ( KQ ‘ 𝐽 ) ∈ Top )
8 kqtop ( 𝐽 ∈ Top ↔ ( KQ ‘ 𝐽 ) ∈ Top )
9 7 8 sylibr ( ( KQ ‘ 𝐽 ) ∈ Reg → 𝐽 ∈ Top )
10 9 2 sylib ( ( KQ ‘ 𝐽 ) ∈ Reg → 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
11 4 kqreglem2 ( ( 𝐽 ∈ ( TopOn ‘ 𝐽 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) → 𝐽 ∈ Reg )
12 10 11 mpancom ( ( KQ ‘ 𝐽 ) ∈ Reg → 𝐽 ∈ Reg )
13 6 12 impbii ( 𝐽 ∈ Reg ↔ ( KQ ‘ 𝐽 ) ∈ Reg )