Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) |
2 |
1
|
kqtopon |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
4 |
|
topontop |
⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ( KQ ‘ 𝐽 ) ∈ Top ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ( KQ ‘ 𝐽 ) ∈ Top ) |
6 |
|
toponss |
⊢ ( ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) → 𝑎 ⊆ ran 𝐹 ) |
7 |
3 6
|
sylan |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) → 𝑎 ⊆ ran 𝐹 ) |
8 |
7
|
sselda |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ ran 𝐹 ) |
9 |
1
|
kqffn |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
10 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑏 ∈ 𝑎 ) → 𝐹 Fn 𝑋 ) |
11 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑋 → ( 𝑏 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ) |
12 |
10 11
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑏 ∈ 𝑎 ) → ( 𝑏 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ) |
13 |
8 12
|
mpbid |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑏 ∈ 𝑎 ) → ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑏 ) |
14 |
|
simpllr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) → 𝐽 ∈ Reg ) |
15 |
1
|
kqid |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
16 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
17 |
|
simplr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) → 𝑎 ∈ ( KQ ‘ 𝐽 ) ) |
18 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) |
19 |
16 17 18
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) |
20 |
9
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → 𝐹 Fn 𝑋 ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) → 𝐹 Fn 𝑋 ) |
22 |
|
elpreima |
⊢ ( 𝐹 Fn 𝑋 → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ) |
23 |
21 22
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ) |
24 |
23
|
biimpar |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) |
25 |
|
regsep |
⊢ ( ( 𝐽 ∈ Reg ∧ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) → ∃ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) |
26 |
14 19 24 25
|
syl3anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) → ∃ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) |
27 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
28 |
|
simprl |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝑤 ∈ 𝐽 ) |
29 |
1
|
kqopn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ) → ( 𝐹 “ 𝑤 ) ∈ ( KQ ‘ 𝐽 ) ) |
30 |
27 28 29
|
syl2anc |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( 𝐹 “ 𝑤 ) ∈ ( KQ ‘ 𝐽 ) ) |
31 |
|
simprrl |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝑧 ∈ 𝑤 ) |
32 |
|
simplrl |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝑧 ∈ 𝑋 ) |
33 |
1
|
kqfvima |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
34 |
27 28 32 33
|
syl3anc |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( 𝑧 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
35 |
31 34
|
mpbid |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑤 ) ) |
36 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
37 |
27 36
|
syl |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝐽 ∈ Top ) |
38 |
|
elssuni |
⊢ ( 𝑤 ∈ 𝐽 → 𝑤 ⊆ ∪ 𝐽 ) |
39 |
38
|
ad2antrl |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝑤 ⊆ ∪ 𝐽 ) |
40 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
41 |
40
|
clscld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑤 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ∈ ( Clsd ‘ 𝐽 ) ) |
42 |
37 39 41
|
syl2anc |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ∈ ( Clsd ‘ 𝐽 ) ) |
43 |
1
|
kqcld |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
44 |
27 42 43
|
syl2anc |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
45 |
40
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑤 ⊆ ∪ 𝐽 ) → 𝑤 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) |
46 |
37 39 45
|
syl2anc |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝑤 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) |
47 |
|
imass2 |
⊢ ( 𝑤 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ) |
48 |
46 47
|
syl |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ) |
49 |
|
eqid |
⊢ ∪ ( KQ ‘ 𝐽 ) = ∪ ( KQ ‘ 𝐽 ) |
50 |
49
|
clsss2 |
⊢ ( ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∧ ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑤 ) ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ) |
51 |
44 48 50
|
syl2anc |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑤 ) ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ) |
52 |
20
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → 𝐹 Fn 𝑋 ) |
53 |
|
fnfun |
⊢ ( 𝐹 Fn 𝑋 → Fun 𝐹 ) |
54 |
52 53
|
syl |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → Fun 𝐹 ) |
55 |
|
simprrr |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) |
56 |
|
funimass2 |
⊢ ( ( Fun 𝐹 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ⊆ 𝑎 ) |
57 |
54 55 56
|
syl2anc |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ) ⊆ 𝑎 ) |
58 |
51 57
|
sstrd |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑤 ) ) ⊆ 𝑎 ) |
59 |
|
eleq2 |
⊢ ( 𝑚 = ( 𝐹 “ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
60 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝐹 “ 𝑤 ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) = ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑤 ) ) ) |
61 |
60
|
sseq1d |
⊢ ( 𝑚 = ( 𝐹 “ 𝑤 ) → ( ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ↔ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑤 ) ) ⊆ 𝑎 ) ) |
62 |
59 61
|
anbi12d |
⊢ ( 𝑚 = ( 𝐹 “ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑤 ) ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑤 ) ) ⊆ 𝑎 ) ) ) |
63 |
62
|
rspcev |
⊢ ( ( ( 𝐹 “ 𝑤 ) ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑤 ) ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑤 ) ) ⊆ 𝑎 ) ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) |
64 |
30 35 58 63
|
syl12anc |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( 𝑧 ∈ 𝑤 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) |
65 |
26 64
|
rexlimddv |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) |
66 |
65
|
expr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) |
67 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ↔ 𝑏 ∈ 𝑎 ) ) |
68 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ↔ 𝑏 ∈ 𝑚 ) ) |
69 |
68
|
anbi1d |
⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ↔ ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) |
70 |
69
|
rexbidv |
⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ( ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ↔ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) |
71 |
67 70
|
imbi12d |
⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ↔ ( 𝑏 ∈ 𝑎 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) ) |
72 |
66 71
|
syl5ibcom |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ( 𝑏 ∈ 𝑎 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) ) |
73 |
72
|
com23 |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑏 ∈ 𝑎 → ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) ) |
74 |
73
|
imp |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑎 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) |
75 |
74
|
an32s |
⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑏 ∈ 𝑎 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) |
76 |
75
|
rexlimdva |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑏 ∈ 𝑎 ) → ( ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) |
77 |
13 76
|
mpd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ 𝑎 ∈ ( KQ ‘ 𝐽 ) ) ∧ 𝑏 ∈ 𝑎 ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) |
78 |
77
|
anasss |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑎 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑏 ∈ 𝑎 ) ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) |
79 |
78
|
ralrimivva |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ∀ 𝑎 ∈ ( KQ ‘ 𝐽 ) ∀ 𝑏 ∈ 𝑎 ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) |
80 |
|
isreg |
⊢ ( ( KQ ‘ 𝐽 ) ∈ Reg ↔ ( ( KQ ‘ 𝐽 ) ∈ Top ∧ ∀ 𝑎 ∈ ( KQ ‘ 𝐽 ) ∀ 𝑏 ∈ 𝑎 ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑏 ∈ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑎 ) ) ) |
81 |
5 79 80
|
sylanbrc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ( KQ ‘ 𝐽 ) ∈ Reg ) |