Metamath Proof Explorer


Theorem kqfvima

Description: When the image set is open, the quotient map satisfies a partial converse to fnfvima , which is normally only true for injective functions. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 𝐹 = ( 𝑥𝑋 ↦ { 𝑦𝐽𝑥𝑦 } )
Assertion kqfvima ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) → ( 𝐴𝑈 ↔ ( 𝐹𝐴 ) ∈ ( 𝐹𝑈 ) ) )

Proof

Step Hyp Ref Expression
1 kqval.2 𝐹 = ( 𝑥𝑋 ↦ { 𝑦𝐽𝑥𝑦 } )
2 1 kqffn ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 )
3 2 3ad2ant1 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) → 𝐹 Fn 𝑋 )
4 toponss ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽 ) → 𝑈𝑋 )
5 4 3adant3 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) → 𝑈𝑋 )
6 fnfvima ( ( 𝐹 Fn 𝑋𝑈𝑋𝐴𝑈 ) → ( 𝐹𝐴 ) ∈ ( 𝐹𝑈 ) )
7 6 3expia ( ( 𝐹 Fn 𝑋𝑈𝑋 ) → ( 𝐴𝑈 → ( 𝐹𝐴 ) ∈ ( 𝐹𝑈 ) ) )
8 3 5 7 syl2anc ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) → ( 𝐴𝑈 → ( 𝐹𝐴 ) ∈ ( 𝐹𝑈 ) ) )
9 fnfun ( 𝐹 Fn 𝑋 → Fun 𝐹 )
10 fvelima ( ( Fun 𝐹 ∧ ( 𝐹𝐴 ) ∈ ( 𝐹𝑈 ) ) → ∃ 𝑧𝑈 ( 𝐹𝑧 ) = ( 𝐹𝐴 ) )
11 10 ex ( Fun 𝐹 → ( ( 𝐹𝐴 ) ∈ ( 𝐹𝑈 ) → ∃ 𝑧𝑈 ( 𝐹𝑧 ) = ( 𝐹𝐴 ) ) )
12 3 9 11 3syl ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) → ( ( 𝐹𝐴 ) ∈ ( 𝐹𝑈 ) → ∃ 𝑧𝑈 ( 𝐹𝑧 ) = ( 𝐹𝐴 ) ) )
13 simpl1 ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) ∧ 𝑧𝑈 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
14 5 sselda ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) ∧ 𝑧𝑈 ) → 𝑧𝑋 )
15 simpl3 ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) ∧ 𝑧𝑈 ) → 𝐴𝑋 )
16 1 kqfeq ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧𝑋𝐴𝑋 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝐴 ) ↔ ∀ 𝑦𝐽 ( 𝑧𝑦𝐴𝑦 ) ) )
17 13 14 15 16 syl3anc ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) ∧ 𝑧𝑈 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝐴 ) ↔ ∀ 𝑦𝐽 ( 𝑧𝑦𝐴𝑦 ) ) )
18 eleq2 ( 𝑦 = 𝑤 → ( 𝑧𝑦𝑧𝑤 ) )
19 eleq2 ( 𝑦 = 𝑤 → ( 𝐴𝑦𝐴𝑤 ) )
20 18 19 bibi12d ( 𝑦 = 𝑤 → ( ( 𝑧𝑦𝐴𝑦 ) ↔ ( 𝑧𝑤𝐴𝑤 ) ) )
21 20 cbvralvw ( ∀ 𝑦𝐽 ( 𝑧𝑦𝐴𝑦 ) ↔ ∀ 𝑤𝐽 ( 𝑧𝑤𝐴𝑤 ) )
22 17 21 bitrdi ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) ∧ 𝑧𝑈 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝐴 ) ↔ ∀ 𝑤𝐽 ( 𝑧𝑤𝐴𝑤 ) ) )
23 simpl2 ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) ∧ 𝑧𝑈 ) → 𝑈𝐽 )
24 eleq2 ( 𝑤 = 𝑈 → ( 𝑧𝑤𝑧𝑈 ) )
25 eleq2 ( 𝑤 = 𝑈 → ( 𝐴𝑤𝐴𝑈 ) )
26 24 25 bibi12d ( 𝑤 = 𝑈 → ( ( 𝑧𝑤𝐴𝑤 ) ↔ ( 𝑧𝑈𝐴𝑈 ) ) )
27 26 rspcv ( 𝑈𝐽 → ( ∀ 𝑤𝐽 ( 𝑧𝑤𝐴𝑤 ) → ( 𝑧𝑈𝐴𝑈 ) ) )
28 23 27 syl ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) ∧ 𝑧𝑈 ) → ( ∀ 𝑤𝐽 ( 𝑧𝑤𝐴𝑤 ) → ( 𝑧𝑈𝐴𝑈 ) ) )
29 22 28 sylbid ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) ∧ 𝑧𝑈 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝐴 ) → ( 𝑧𝑈𝐴𝑈 ) ) )
30 simpr ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) ∧ 𝑧𝑈 ) → 𝑧𝑈 )
31 biimp ( ( 𝑧𝑈𝐴𝑈 ) → ( 𝑧𝑈𝐴𝑈 ) )
32 29 30 31 syl6ci ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) ∧ 𝑧𝑈 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝐴 ) → 𝐴𝑈 ) )
33 32 rexlimdva ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) → ( ∃ 𝑧𝑈 ( 𝐹𝑧 ) = ( 𝐹𝐴 ) → 𝐴𝑈 ) )
34 12 33 syld ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) → ( ( 𝐹𝐴 ) ∈ ( 𝐹𝑈 ) → 𝐴𝑈 ) )
35 8 34 impbid ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈𝐽𝐴𝑋 ) → ( 𝐴𝑈 ↔ ( 𝐹𝐴 ) ∈ ( 𝐹𝑈 ) ) )