Metamath Proof Explorer


Theorem kqfvima

Description: When the image set is open, the quotient map satisfies a partial converse to fnfvima , which is normally only true for injective functions. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F = x X y J | x y
Assertion kqfvima J TopOn X U J A X A U F A F U

Proof

Step Hyp Ref Expression
1 kqval.2 F = x X y J | x y
2 1 kqffn J TopOn X F Fn X
3 2 3ad2ant1 J TopOn X U J A X F Fn X
4 toponss J TopOn X U J U X
5 4 3adant3 J TopOn X U J A X U X
6 fnfvima F Fn X U X A U F A F U
7 6 3expia F Fn X U X A U F A F U
8 3 5 7 syl2anc J TopOn X U J A X A U F A F U
9 fnfun F Fn X Fun F
10 fvelima Fun F F A F U z U F z = F A
11 10 ex Fun F F A F U z U F z = F A
12 3 9 11 3syl J TopOn X U J A X F A F U z U F z = F A
13 simpl1 J TopOn X U J A X z U J TopOn X
14 5 sselda J TopOn X U J A X z U z X
15 simpl3 J TopOn X U J A X z U A X
16 1 kqfeq J TopOn X z X A X F z = F A y J z y A y
17 13 14 15 16 syl3anc J TopOn X U J A X z U F z = F A y J z y A y
18 eleq2 y = w z y z w
19 eleq2 y = w A y A w
20 18 19 bibi12d y = w z y A y z w A w
21 20 cbvralvw y J z y A y w J z w A w
22 17 21 bitrdi J TopOn X U J A X z U F z = F A w J z w A w
23 simpl2 J TopOn X U J A X z U U J
24 eleq2 w = U z w z U
25 eleq2 w = U A w A U
26 24 25 bibi12d w = U z w A w z U A U
27 26 rspcv U J w J z w A w z U A U
28 23 27 syl J TopOn X U J A X z U w J z w A w z U A U
29 22 28 sylbid J TopOn X U J A X z U F z = F A z U A U
30 simpr J TopOn X U J A X z U z U
31 biimp z U A U z U A U
32 29 30 31 syl6ci J TopOn X U J A X z U F z = F A A U
33 32 rexlimdva J TopOn X U J A X z U F z = F A A U
34 12 33 syld J TopOn X U J A X F A F U A U
35 8 34 impbid J TopOn X U J A X A U F A F U