Metamath Proof Explorer


Theorem lcm4un

Description: Least common multiple of natural numbers up to 4 equals 12. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Assertion lcm4un ( lcm ‘ ( 1 ... 4 ) ) = 1 2

Proof

Step Hyp Ref Expression
1 4nn 4 ∈ ℕ
2 id ( 4 ∈ ℕ → 4 ∈ ℕ )
3 2 lcmfunnnd ( 4 ∈ ℕ → ( lcm ‘ ( 1 ... 4 ) ) = ( ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) lcm 4 ) )
4 1 3 ax-mp ( lcm ‘ ( 1 ... 4 ) ) = ( ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) lcm 4 )
5 4m1e3 ( 4 − 1 ) = 3
6 5 oveq2i ( 1 ... ( 4 − 1 ) ) = ( 1 ... 3 )
7 6 fveq2i ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) = ( lcm ‘ ( 1 ... 3 ) )
8 lcm3un ( lcm ‘ ( 1 ... 3 ) ) = 6
9 7 8 eqtri ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) = 6
10 9 oveq1i ( ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) lcm 4 ) = ( 6 lcm 4 )
11 6lcm4e12 ( 6 lcm 4 ) = 1 2
12 4 10 11 3eqtri ( lcm ‘ ( 1 ... 4 ) ) = 1 2