Step |
Hyp |
Ref |
Expression |
1 |
|
4nn |
⊢ 4 ∈ ℕ |
2 |
|
id |
⊢ ( 4 ∈ ℕ → 4 ∈ ℕ ) |
3 |
2
|
lcmfunnnd |
⊢ ( 4 ∈ ℕ → ( lcm ‘ ( 1 ... 4 ) ) = ( ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) lcm 4 ) ) |
4 |
1 3
|
ax-mp |
⊢ ( lcm ‘ ( 1 ... 4 ) ) = ( ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) lcm 4 ) |
5 |
|
4m1e3 |
⊢ ( 4 − 1 ) = 3 |
6 |
5
|
oveq2i |
⊢ ( 1 ... ( 4 − 1 ) ) = ( 1 ... 3 ) |
7 |
6
|
fveq2i |
⊢ ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) = ( lcm ‘ ( 1 ... 3 ) ) |
8 |
|
lcm3un |
⊢ ( lcm ‘ ( 1 ... 3 ) ) = 6 |
9 |
7 8
|
eqtri |
⊢ ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) = 6 |
10 |
9
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) lcm 4 ) = ( 6 lcm 4 ) |
11 |
|
6lcm4e12 |
⊢ ( 6 lcm 4 ) = ; 1 2 |
12 |
4 10 11
|
3eqtri |
⊢ ( lcm ‘ ( 1 ... 4 ) ) = ; 1 2 |