| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4nn |
⊢ 4 ∈ ℕ |
| 2 |
|
id |
⊢ ( 4 ∈ ℕ → 4 ∈ ℕ ) |
| 3 |
2
|
lcmfunnnd |
⊢ ( 4 ∈ ℕ → ( lcm ‘ ( 1 ... 4 ) ) = ( ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) lcm 4 ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( lcm ‘ ( 1 ... 4 ) ) = ( ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) lcm 4 ) |
| 5 |
|
4m1e3 |
⊢ ( 4 − 1 ) = 3 |
| 6 |
5
|
oveq2i |
⊢ ( 1 ... ( 4 − 1 ) ) = ( 1 ... 3 ) |
| 7 |
6
|
fveq2i |
⊢ ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) = ( lcm ‘ ( 1 ... 3 ) ) |
| 8 |
|
lcm3un |
⊢ ( lcm ‘ ( 1 ... 3 ) ) = 6 |
| 9 |
7 8
|
eqtri |
⊢ ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) = 6 |
| 10 |
9
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... ( 4 − 1 ) ) ) lcm 4 ) = ( 6 lcm 4 ) |
| 11 |
|
6lcm4e12 |
⊢ ( 6 lcm 4 ) = ; 1 2 |
| 12 |
4 10 11
|
3eqtri |
⊢ ( lcm ‘ ( 1 ... 4 ) ) = ; 1 2 |