Step |
Hyp |
Ref |
Expression |
1 |
|
3nn |
⊢ 3 ∈ ℕ |
2 |
|
id |
⊢ ( 3 ∈ ℕ → 3 ∈ ℕ ) |
3 |
2
|
lcmfunnnd |
⊢ ( 3 ∈ ℕ → ( lcm ‘ ( 1 ... 3 ) ) = ( ( lcm ‘ ( 1 ... ( 3 − 1 ) ) ) lcm 3 ) ) |
4 |
1 3
|
ax-mp |
⊢ ( lcm ‘ ( 1 ... 3 ) ) = ( ( lcm ‘ ( 1 ... ( 3 − 1 ) ) ) lcm 3 ) |
5 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
6 |
5
|
oveq2i |
⊢ ( 1 ... ( 3 − 1 ) ) = ( 1 ... 2 ) |
7 |
6
|
fveq2i |
⊢ ( lcm ‘ ( 1 ... ( 3 − 1 ) ) ) = ( lcm ‘ ( 1 ... 2 ) ) |
8 |
|
lcm2un |
⊢ ( lcm ‘ ( 1 ... 2 ) ) = 2 |
9 |
7 8
|
eqtri |
⊢ ( lcm ‘ ( 1 ... ( 3 − 1 ) ) ) = 2 |
10 |
9
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... ( 3 − 1 ) ) ) lcm 3 ) = ( 2 lcm 3 ) |
11 |
|
2z |
⊢ 2 ∈ ℤ |
12 |
|
3z |
⊢ 3 ∈ ℤ |
13 |
11 12
|
pm3.2i |
⊢ ( 2 ∈ ℤ ∧ 3 ∈ ℤ ) |
14 |
|
lcmcom |
⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ) → ( 2 lcm 3 ) = ( 3 lcm 2 ) ) |
15 |
13 14
|
ax-mp |
⊢ ( 2 lcm 3 ) = ( 3 lcm 2 ) |
16 |
|
3lcm2e6 |
⊢ ( 3 lcm 2 ) = 6 |
17 |
15 16
|
eqtri |
⊢ ( 2 lcm 3 ) = 6 |
18 |
10 17
|
eqtri |
⊢ ( ( lcm ‘ ( 1 ... ( 3 − 1 ) ) ) lcm 3 ) = 6 |
19 |
4 18
|
eqtri |
⊢ ( lcm ‘ ( 1 ... 3 ) ) = 6 |