Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
⊢ 2 ∈ ℕ |
2 |
|
id |
⊢ ( 2 ∈ ℕ → 2 ∈ ℕ ) |
3 |
2
|
lcmfunnnd |
⊢ ( 2 ∈ ℕ → ( lcm ‘ ( 1 ... 2 ) ) = ( ( lcm ‘ ( 1 ... ( 2 − 1 ) ) ) lcm 2 ) ) |
4 |
1 3
|
ax-mp |
⊢ ( lcm ‘ ( 1 ... 2 ) ) = ( ( lcm ‘ ( 1 ... ( 2 − 1 ) ) ) lcm 2 ) |
5 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
6 |
5
|
oveq2i |
⊢ ( 1 ... ( 2 − 1 ) ) = ( 1 ... 1 ) |
7 |
6
|
fveq2i |
⊢ ( lcm ‘ ( 1 ... ( 2 − 1 ) ) ) = ( lcm ‘ ( 1 ... 1 ) ) |
8 |
7
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... ( 2 − 1 ) ) ) lcm 2 ) = ( ( lcm ‘ ( 1 ... 1 ) ) lcm 2 ) |
9 |
4 8
|
eqtri |
⊢ ( lcm ‘ ( 1 ... 2 ) ) = ( ( lcm ‘ ( 1 ... 1 ) ) lcm 2 ) |
10 |
|
lcm1un |
⊢ ( lcm ‘ ( 1 ... 1 ) ) = 1 |
11 |
10
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... 1 ) ) lcm 2 ) = ( 1 lcm 2 ) |
12 |
|
1z |
⊢ 1 ∈ ℤ |
13 |
|
2z |
⊢ 2 ∈ ℤ |
14 |
|
lcmcom |
⊢ ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 1 lcm 2 ) = ( 2 lcm 1 ) ) |
15 |
12 13 14
|
mp2an |
⊢ ( 1 lcm 2 ) = ( 2 lcm 1 ) |
16 |
|
lcm1 |
⊢ ( 2 ∈ ℤ → ( 2 lcm 1 ) = ( abs ‘ 2 ) ) |
17 |
13 16
|
ax-mp |
⊢ ( 2 lcm 1 ) = ( abs ‘ 2 ) |
18 |
|
2re |
⊢ 2 ∈ ℝ |
19 |
|
0le2 |
⊢ 0 ≤ 2 |
20 |
18 19
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 ≤ 2 ) |
21 |
|
absid |
⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( abs ‘ 2 ) = 2 ) |
22 |
20 21
|
ax-mp |
⊢ ( abs ‘ 2 ) = 2 |
23 |
17 22
|
eqtri |
⊢ ( 2 lcm 1 ) = 2 |
24 |
15 23
|
eqtri |
⊢ ( 1 lcm 2 ) = 2 |
25 |
11 24
|
eqtri |
⊢ ( ( lcm ‘ ( 1 ... 1 ) ) lcm 2 ) = 2 |
26 |
9 25
|
eqtri |
⊢ ( lcm ‘ ( 1 ... 2 ) ) = 2 |