Metamath Proof Explorer


Theorem lcm2un

Description: Least common multiple of natural numbers up to 2 equals 2. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Assertion lcm2un ( lcm ‘ ( 1 ... 2 ) ) = 2

Proof

Step Hyp Ref Expression
1 2nn 2 ∈ ℕ
2 id ( 2 ∈ ℕ → 2 ∈ ℕ )
3 2 lcmfunnnd ( 2 ∈ ℕ → ( lcm ‘ ( 1 ... 2 ) ) = ( ( lcm ‘ ( 1 ... ( 2 − 1 ) ) ) lcm 2 ) )
4 1 3 ax-mp ( lcm ‘ ( 1 ... 2 ) ) = ( ( lcm ‘ ( 1 ... ( 2 − 1 ) ) ) lcm 2 )
5 2m1e1 ( 2 − 1 ) = 1
6 5 oveq2i ( 1 ... ( 2 − 1 ) ) = ( 1 ... 1 )
7 6 fveq2i ( lcm ‘ ( 1 ... ( 2 − 1 ) ) ) = ( lcm ‘ ( 1 ... 1 ) )
8 7 oveq1i ( ( lcm ‘ ( 1 ... ( 2 − 1 ) ) ) lcm 2 ) = ( ( lcm ‘ ( 1 ... 1 ) ) lcm 2 )
9 4 8 eqtri ( lcm ‘ ( 1 ... 2 ) ) = ( ( lcm ‘ ( 1 ... 1 ) ) lcm 2 )
10 lcm1un ( lcm ‘ ( 1 ... 1 ) ) = 1
11 10 oveq1i ( ( lcm ‘ ( 1 ... 1 ) ) lcm 2 ) = ( 1 lcm 2 )
12 1z 1 ∈ ℤ
13 2z 2 ∈ ℤ
14 lcmcom ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 1 lcm 2 ) = ( 2 lcm 1 ) )
15 12 13 14 mp2an ( 1 lcm 2 ) = ( 2 lcm 1 )
16 lcm1 ( 2 ∈ ℤ → ( 2 lcm 1 ) = ( abs ‘ 2 ) )
17 13 16 ax-mp ( 2 lcm 1 ) = ( abs ‘ 2 )
18 2re 2 ∈ ℝ
19 0le2 0 ≤ 2
20 18 19 pm3.2i ( 2 ∈ ℝ ∧ 0 ≤ 2 )
21 absid ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( abs ‘ 2 ) = 2 )
22 20 21 ax-mp ( abs ‘ 2 ) = 2
23 17 22 eqtri ( 2 lcm 1 ) = 2
24 15 23 eqtri ( 1 lcm 2 ) = 2
25 11 24 eqtri ( ( lcm ‘ ( 1 ... 1 ) ) lcm 2 ) = 2
26 9 25 eqtri ( lcm ‘ ( 1 ... 2 ) ) = 2