Step |
Hyp |
Ref |
Expression |
1 |
|
1nn |
⊢ 1 ∈ ℕ |
2 |
|
id |
⊢ ( 1 ∈ ℕ → 1 ∈ ℕ ) |
3 |
2
|
lcmfunnnd |
⊢ ( 1 ∈ ℕ → ( lcm ‘ ( 1 ... 1 ) ) = ( ( lcm ‘ ( 1 ... ( 1 − 1 ) ) ) lcm 1 ) ) |
4 |
1 3
|
ax-mp |
⊢ ( lcm ‘ ( 1 ... 1 ) ) = ( ( lcm ‘ ( 1 ... ( 1 − 1 ) ) ) lcm 1 ) |
5 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
6 |
5
|
oveq2i |
⊢ ( 1 ... ( 1 − 1 ) ) = ( 1 ... 0 ) |
7 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
8 |
6 7
|
eqtri |
⊢ ( 1 ... ( 1 − 1 ) ) = ∅ |
9 |
8
|
fveq2i |
⊢ ( lcm ‘ ( 1 ... ( 1 − 1 ) ) ) = ( lcm ‘ ∅ ) |
10 |
|
lcmf0 |
⊢ ( lcm ‘ ∅ ) = 1 |
11 |
9 10
|
eqtri |
⊢ ( lcm ‘ ( 1 ... ( 1 − 1 ) ) ) = 1 |
12 |
11
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... ( 1 − 1 ) ) ) lcm 1 ) = ( 1 lcm 1 ) |
13 |
|
1z |
⊢ 1 ∈ ℤ |
14 |
|
lcmid |
⊢ ( 1 ∈ ℤ → ( 1 lcm 1 ) = ( abs ‘ 1 ) ) |
15 |
13 14
|
ax-mp |
⊢ ( 1 lcm 1 ) = ( abs ‘ 1 ) |
16 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
17 |
15 16
|
eqtri |
⊢ ( 1 lcm 1 ) = 1 |
18 |
12 17
|
eqtri |
⊢ ( ( lcm ‘ ( 1 ... ( 1 − 1 ) ) ) lcm 1 ) = 1 |
19 |
4 18
|
eqtri |
⊢ ( lcm ‘ ( 1 ... 1 ) ) = 1 |