Metamath Proof Explorer


Theorem lcm1un

Description: Least common multiple of natural numbers up to 1 equals 1. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Assertion lcm1un ( lcm ‘ ( 1 ... 1 ) ) = 1

Proof

Step Hyp Ref Expression
1 1nn 1 ∈ ℕ
2 id ( 1 ∈ ℕ → 1 ∈ ℕ )
3 2 lcmfunnnd ( 1 ∈ ℕ → ( lcm ‘ ( 1 ... 1 ) ) = ( ( lcm ‘ ( 1 ... ( 1 − 1 ) ) ) lcm 1 ) )
4 1 3 ax-mp ( lcm ‘ ( 1 ... 1 ) ) = ( ( lcm ‘ ( 1 ... ( 1 − 1 ) ) ) lcm 1 )
5 1m1e0 ( 1 − 1 ) = 0
6 5 oveq2i ( 1 ... ( 1 − 1 ) ) = ( 1 ... 0 )
7 fz10 ( 1 ... 0 ) = ∅
8 6 7 eqtri ( 1 ... ( 1 − 1 ) ) = ∅
9 8 fveq2i ( lcm ‘ ( 1 ... ( 1 − 1 ) ) ) = ( lcm ‘ ∅ )
10 lcmf0 ( lcm ‘ ∅ ) = 1
11 9 10 eqtri ( lcm ‘ ( 1 ... ( 1 − 1 ) ) ) = 1
12 11 oveq1i ( ( lcm ‘ ( 1 ... ( 1 − 1 ) ) ) lcm 1 ) = ( 1 lcm 1 )
13 1z 1 ∈ ℤ
14 lcmid ( 1 ∈ ℤ → ( 1 lcm 1 ) = ( abs ‘ 1 ) )
15 13 14 ax-mp ( 1 lcm 1 ) = ( abs ‘ 1 )
16 abs1 ( abs ‘ 1 ) = 1
17 15 16 eqtri ( 1 lcm 1 ) = 1
18 12 17 eqtri ( ( lcm ‘ ( 1 ... ( 1 − 1 ) ) ) lcm 1 ) = 1
19 4 18 eqtri ( lcm ‘ ( 1 ... 1 ) ) = 1