| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn |
|- 1 e. NN |
| 2 |
|
id |
|- ( 1 e. NN -> 1 e. NN ) |
| 3 |
2
|
lcmfunnnd |
|- ( 1 e. NN -> ( _lcm ` ( 1 ... 1 ) ) = ( ( _lcm ` ( 1 ... ( 1 - 1 ) ) ) lcm 1 ) ) |
| 4 |
1 3
|
ax-mp |
|- ( _lcm ` ( 1 ... 1 ) ) = ( ( _lcm ` ( 1 ... ( 1 - 1 ) ) ) lcm 1 ) |
| 5 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 6 |
5
|
oveq2i |
|- ( 1 ... ( 1 - 1 ) ) = ( 1 ... 0 ) |
| 7 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
| 8 |
6 7
|
eqtri |
|- ( 1 ... ( 1 - 1 ) ) = (/) |
| 9 |
8
|
fveq2i |
|- ( _lcm ` ( 1 ... ( 1 - 1 ) ) ) = ( _lcm ` (/) ) |
| 10 |
|
lcmf0 |
|- ( _lcm ` (/) ) = 1 |
| 11 |
9 10
|
eqtri |
|- ( _lcm ` ( 1 ... ( 1 - 1 ) ) ) = 1 |
| 12 |
11
|
oveq1i |
|- ( ( _lcm ` ( 1 ... ( 1 - 1 ) ) ) lcm 1 ) = ( 1 lcm 1 ) |
| 13 |
|
1z |
|- 1 e. ZZ |
| 14 |
|
lcmid |
|- ( 1 e. ZZ -> ( 1 lcm 1 ) = ( abs ` 1 ) ) |
| 15 |
13 14
|
ax-mp |
|- ( 1 lcm 1 ) = ( abs ` 1 ) |
| 16 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 17 |
15 16
|
eqtri |
|- ( 1 lcm 1 ) = 1 |
| 18 |
12 17
|
eqtri |
|- ( ( _lcm ` ( 1 ... ( 1 - 1 ) ) ) lcm 1 ) = 1 |
| 19 |
4 18
|
eqtri |
|- ( _lcm ` ( 1 ... 1 ) ) = 1 |