| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn |
|- 2 e. NN |
| 2 |
|
id |
|- ( 2 e. NN -> 2 e. NN ) |
| 3 |
2
|
lcmfunnnd |
|- ( 2 e. NN -> ( _lcm ` ( 1 ... 2 ) ) = ( ( _lcm ` ( 1 ... ( 2 - 1 ) ) ) lcm 2 ) ) |
| 4 |
1 3
|
ax-mp |
|- ( _lcm ` ( 1 ... 2 ) ) = ( ( _lcm ` ( 1 ... ( 2 - 1 ) ) ) lcm 2 ) |
| 5 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 6 |
5
|
oveq2i |
|- ( 1 ... ( 2 - 1 ) ) = ( 1 ... 1 ) |
| 7 |
6
|
fveq2i |
|- ( _lcm ` ( 1 ... ( 2 - 1 ) ) ) = ( _lcm ` ( 1 ... 1 ) ) |
| 8 |
7
|
oveq1i |
|- ( ( _lcm ` ( 1 ... ( 2 - 1 ) ) ) lcm 2 ) = ( ( _lcm ` ( 1 ... 1 ) ) lcm 2 ) |
| 9 |
4 8
|
eqtri |
|- ( _lcm ` ( 1 ... 2 ) ) = ( ( _lcm ` ( 1 ... 1 ) ) lcm 2 ) |
| 10 |
|
lcm1un |
|- ( _lcm ` ( 1 ... 1 ) ) = 1 |
| 11 |
10
|
oveq1i |
|- ( ( _lcm ` ( 1 ... 1 ) ) lcm 2 ) = ( 1 lcm 2 ) |
| 12 |
|
1z |
|- 1 e. ZZ |
| 13 |
|
2z |
|- 2 e. ZZ |
| 14 |
|
lcmcom |
|- ( ( 1 e. ZZ /\ 2 e. ZZ ) -> ( 1 lcm 2 ) = ( 2 lcm 1 ) ) |
| 15 |
12 13 14
|
mp2an |
|- ( 1 lcm 2 ) = ( 2 lcm 1 ) |
| 16 |
|
lcm1 |
|- ( 2 e. ZZ -> ( 2 lcm 1 ) = ( abs ` 2 ) ) |
| 17 |
13 16
|
ax-mp |
|- ( 2 lcm 1 ) = ( abs ` 2 ) |
| 18 |
|
2re |
|- 2 e. RR |
| 19 |
|
0le2 |
|- 0 <_ 2 |
| 20 |
18 19
|
pm3.2i |
|- ( 2 e. RR /\ 0 <_ 2 ) |
| 21 |
|
absid |
|- ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 ) |
| 22 |
20 21
|
ax-mp |
|- ( abs ` 2 ) = 2 |
| 23 |
17 22
|
eqtri |
|- ( 2 lcm 1 ) = 2 |
| 24 |
15 23
|
eqtri |
|- ( 1 lcm 2 ) = 2 |
| 25 |
11 24
|
eqtri |
|- ( ( _lcm ` ( 1 ... 1 ) ) lcm 2 ) = 2 |
| 26 |
9 25
|
eqtri |
|- ( _lcm ` ( 1 ... 2 ) ) = 2 |