Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
|- 2 e. NN |
2 |
|
id |
|- ( 2 e. NN -> 2 e. NN ) |
3 |
2
|
lcmfunnnd |
|- ( 2 e. NN -> ( _lcm ` ( 1 ... 2 ) ) = ( ( _lcm ` ( 1 ... ( 2 - 1 ) ) ) lcm 2 ) ) |
4 |
1 3
|
ax-mp |
|- ( _lcm ` ( 1 ... 2 ) ) = ( ( _lcm ` ( 1 ... ( 2 - 1 ) ) ) lcm 2 ) |
5 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
6 |
5
|
oveq2i |
|- ( 1 ... ( 2 - 1 ) ) = ( 1 ... 1 ) |
7 |
6
|
fveq2i |
|- ( _lcm ` ( 1 ... ( 2 - 1 ) ) ) = ( _lcm ` ( 1 ... 1 ) ) |
8 |
7
|
oveq1i |
|- ( ( _lcm ` ( 1 ... ( 2 - 1 ) ) ) lcm 2 ) = ( ( _lcm ` ( 1 ... 1 ) ) lcm 2 ) |
9 |
4 8
|
eqtri |
|- ( _lcm ` ( 1 ... 2 ) ) = ( ( _lcm ` ( 1 ... 1 ) ) lcm 2 ) |
10 |
|
lcm1un |
|- ( _lcm ` ( 1 ... 1 ) ) = 1 |
11 |
10
|
oveq1i |
|- ( ( _lcm ` ( 1 ... 1 ) ) lcm 2 ) = ( 1 lcm 2 ) |
12 |
|
1z |
|- 1 e. ZZ |
13 |
|
2z |
|- 2 e. ZZ |
14 |
|
lcmcom |
|- ( ( 1 e. ZZ /\ 2 e. ZZ ) -> ( 1 lcm 2 ) = ( 2 lcm 1 ) ) |
15 |
12 13 14
|
mp2an |
|- ( 1 lcm 2 ) = ( 2 lcm 1 ) |
16 |
|
lcm1 |
|- ( 2 e. ZZ -> ( 2 lcm 1 ) = ( abs ` 2 ) ) |
17 |
13 16
|
ax-mp |
|- ( 2 lcm 1 ) = ( abs ` 2 ) |
18 |
|
2re |
|- 2 e. RR |
19 |
|
0le2 |
|- 0 <_ 2 |
20 |
18 19
|
pm3.2i |
|- ( 2 e. RR /\ 0 <_ 2 ) |
21 |
|
absid |
|- ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 ) |
22 |
20 21
|
ax-mp |
|- ( abs ` 2 ) = 2 |
23 |
17 22
|
eqtri |
|- ( 2 lcm 1 ) = 2 |
24 |
15 23
|
eqtri |
|- ( 1 lcm 2 ) = 2 |
25 |
11 24
|
eqtri |
|- ( ( _lcm ` ( 1 ... 1 ) ) lcm 2 ) = 2 |
26 |
9 25
|
eqtri |
|- ( _lcm ` ( 1 ... 2 ) ) = 2 |