Metamath Proof Explorer


Theorem lcm2un

Description: Least common multiple of natural numbers up to 2 equals 2. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Assertion lcm2un
|- ( _lcm ` ( 1 ... 2 ) ) = 2

Proof

Step Hyp Ref Expression
1 2nn
 |-  2 e. NN
2 id
 |-  ( 2 e. NN -> 2 e. NN )
3 2 lcmfunnnd
 |-  ( 2 e. NN -> ( _lcm ` ( 1 ... 2 ) ) = ( ( _lcm ` ( 1 ... ( 2 - 1 ) ) ) lcm 2 ) )
4 1 3 ax-mp
 |-  ( _lcm ` ( 1 ... 2 ) ) = ( ( _lcm ` ( 1 ... ( 2 - 1 ) ) ) lcm 2 )
5 2m1e1
 |-  ( 2 - 1 ) = 1
6 5 oveq2i
 |-  ( 1 ... ( 2 - 1 ) ) = ( 1 ... 1 )
7 6 fveq2i
 |-  ( _lcm ` ( 1 ... ( 2 - 1 ) ) ) = ( _lcm ` ( 1 ... 1 ) )
8 7 oveq1i
 |-  ( ( _lcm ` ( 1 ... ( 2 - 1 ) ) ) lcm 2 ) = ( ( _lcm ` ( 1 ... 1 ) ) lcm 2 )
9 4 8 eqtri
 |-  ( _lcm ` ( 1 ... 2 ) ) = ( ( _lcm ` ( 1 ... 1 ) ) lcm 2 )
10 lcm1un
 |-  ( _lcm ` ( 1 ... 1 ) ) = 1
11 10 oveq1i
 |-  ( ( _lcm ` ( 1 ... 1 ) ) lcm 2 ) = ( 1 lcm 2 )
12 1z
 |-  1 e. ZZ
13 2z
 |-  2 e. ZZ
14 lcmcom
 |-  ( ( 1 e. ZZ /\ 2 e. ZZ ) -> ( 1 lcm 2 ) = ( 2 lcm 1 ) )
15 12 13 14 mp2an
 |-  ( 1 lcm 2 ) = ( 2 lcm 1 )
16 lcm1
 |-  ( 2 e. ZZ -> ( 2 lcm 1 ) = ( abs ` 2 ) )
17 13 16 ax-mp
 |-  ( 2 lcm 1 ) = ( abs ` 2 )
18 2re
 |-  2 e. RR
19 0le2
 |-  0 <_ 2
20 18 19 pm3.2i
 |-  ( 2 e. RR /\ 0 <_ 2 )
21 absid
 |-  ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 )
22 20 21 ax-mp
 |-  ( abs ` 2 ) = 2
23 17 22 eqtri
 |-  ( 2 lcm 1 ) = 2
24 15 23 eqtri
 |-  ( 1 lcm 2 ) = 2
25 11 24 eqtri
 |-  ( ( _lcm ` ( 1 ... 1 ) ) lcm 2 ) = 2
26 9 25 eqtri
 |-  ( _lcm ` ( 1 ... 2 ) ) = 2