| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcd1 |
|- ( M e. ZZ -> ( M gcd 1 ) = 1 ) |
| 2 |
1
|
oveq2d |
|- ( M e. ZZ -> ( ( M lcm 1 ) x. ( M gcd 1 ) ) = ( ( M lcm 1 ) x. 1 ) ) |
| 3 |
|
1z |
|- 1 e. ZZ |
| 4 |
|
lcmcl |
|- ( ( M e. ZZ /\ 1 e. ZZ ) -> ( M lcm 1 ) e. NN0 ) |
| 5 |
3 4
|
mpan2 |
|- ( M e. ZZ -> ( M lcm 1 ) e. NN0 ) |
| 6 |
5
|
nn0cnd |
|- ( M e. ZZ -> ( M lcm 1 ) e. CC ) |
| 7 |
6
|
mulridd |
|- ( M e. ZZ -> ( ( M lcm 1 ) x. 1 ) = ( M lcm 1 ) ) |
| 8 |
2 7
|
eqtr2d |
|- ( M e. ZZ -> ( M lcm 1 ) = ( ( M lcm 1 ) x. ( M gcd 1 ) ) ) |
| 9 |
|
lcmgcd |
|- ( ( M e. ZZ /\ 1 e. ZZ ) -> ( ( M lcm 1 ) x. ( M gcd 1 ) ) = ( abs ` ( M x. 1 ) ) ) |
| 10 |
3 9
|
mpan2 |
|- ( M e. ZZ -> ( ( M lcm 1 ) x. ( M gcd 1 ) ) = ( abs ` ( M x. 1 ) ) ) |
| 11 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
| 12 |
11
|
mulridd |
|- ( M e. ZZ -> ( M x. 1 ) = M ) |
| 13 |
12
|
fveq2d |
|- ( M e. ZZ -> ( abs ` ( M x. 1 ) ) = ( abs ` M ) ) |
| 14 |
8 10 13
|
3eqtrd |
|- ( M e. ZZ -> ( M lcm 1 ) = ( abs ` M ) ) |