Metamath Proof Explorer


Theorem lcm1

Description: The lcm of an integer and 1 is the absolute value of the integer. (Contributed by AV, 23-Aug-2020)

Ref Expression
Assertion lcm1 MMlcm1=M

Proof

Step Hyp Ref Expression
1 gcd1 MMgcd1=1
2 1 oveq2d MMlcm1Mgcd1=Mlcm11
3 1z 1
4 lcmcl M1Mlcm10
5 3 4 mpan2 MMlcm10
6 5 nn0cnd MMlcm1
7 6 mulridd MMlcm11=Mlcm1
8 2 7 eqtr2d MMlcm1=Mlcm1Mgcd1
9 lcmgcd M1Mlcm1Mgcd1= M1
10 3 9 mpan2 MMlcm1Mgcd1= M1
11 zcn MM
12 11 mulridd M M1=M
13 12 fveq2d M M1=M
14 8 10 13 3eqtrd MMlcm1=M