| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcd1 |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 1 ) = 1 ) |
| 2 |
1
|
oveq2d |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 lcm 1 ) · ( 𝑀 gcd 1 ) ) = ( ( 𝑀 lcm 1 ) · 1 ) ) |
| 3 |
|
1z |
⊢ 1 ∈ ℤ |
| 4 |
|
lcmcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑀 lcm 1 ) ∈ ℕ0 ) |
| 5 |
3 4
|
mpan2 |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 1 ) ∈ ℕ0 ) |
| 6 |
5
|
nn0cnd |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 1 ) ∈ ℂ ) |
| 7 |
6
|
mulridd |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 lcm 1 ) · 1 ) = ( 𝑀 lcm 1 ) ) |
| 8 |
2 7
|
eqtr2d |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 1 ) = ( ( 𝑀 lcm 1 ) · ( 𝑀 gcd 1 ) ) ) |
| 9 |
|
lcmgcd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( 𝑀 lcm 1 ) · ( 𝑀 gcd 1 ) ) = ( abs ‘ ( 𝑀 · 1 ) ) ) |
| 10 |
3 9
|
mpan2 |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 lcm 1 ) · ( 𝑀 gcd 1 ) ) = ( abs ‘ ( 𝑀 · 1 ) ) ) |
| 11 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
| 12 |
11
|
mulridd |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 · 1 ) = 𝑀 ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝑀 ∈ ℤ → ( abs ‘ ( 𝑀 · 1 ) ) = ( abs ‘ 𝑀 ) ) |
| 14 |
8 10 13
|
3eqtrd |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 1 ) = ( abs ‘ 𝑀 ) ) |